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Preface

The first step in-problem solving is determining the reasons and

causes that underlie the problem. Such. has been the purpose of this dis-

sertation. Previous work Involving the second order even-parity form of

the Boltzmann transport equation successfully demonstrated its ability

to generate ray effect free solutions. These solutions were obtained in

transport media requiring relatively simple geometry and isotropic

scatter. The obvious extension of this work was to attempt a more complex
00

transport problem. An air-over-ground problem was chosen since it adds

the necessary complication to meaningfully test the feasibility of such

an extension. Additionally, the solution of this problem is important

in predicting the survivability and vulnerability of military systems

in a nuclear environment. Thus, a successful extension would yield a

worthwhile product. Unfortunately such an extension was not possible

using the standard solution techniques currently available. The positive

aspect of this research is that the problems associated with applying

this equation to more complex transport problems are identified and the

causes are known. The results of this research will provide direction

for future efforts aimed at developing new solution techniques that will

successfully solve the even-parity form of the Boltzmann equation formu-

lated for these more complex problems.

As in all research efforts, several people played an important role.

I would like to particularly thank Captain David Hardin for the technical

guidance he provided. His contribution to this research effort was signifi-

cant. I would also like to express my gratitude to Dr. Bridgman, Dr. Jones,

and Dr. Kelleher, the other members of my committee, for their suggestions

and constant encouragement. Two members of the Air Force Weapons Labora-

tories (AFWL) deserve special recognition, Mr. John Burgio and Mr. Harry
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Murphy. These two individuals sponsored this research through the

Technology Division of. the AFWL. Additionally they provided computer

support and several DOT 3.5 runs for use in analyzing specific problems

encountered during this research. My family deserves my sincerest

gratitude and love. Their patience and sacrifices during this research

have been immense. Finally, I wish to thank the good Lord for providing

me the strength to overcome the frustration that was abundant during

this effort.
0o

John C. Souders, Jr.
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Abstract

Published work indicated that a finite element solution of the even-

parity form of the Boltzmann equation.(.EPFBE) provided a means for curing

the ray effect in transport problems. This conclusion was made after

examining the solutions of some simply defined problems involving plane

geometry and isotropic scatter. The purpose of this research was to

determine the feasibility of applying this equation to more complex prob-

lems. The air-over-ground problem was chosen. This problem is important

in nuclear weapon effects calculations and requires two-dimensional

cylindrical geometry, anisotropic scatter, and a multigroup solution.

Additionally, the discrete ordinates method applied to this problem gener-

ates solutions with severe ray effects. Several numerical approaches

based on the finite element method were attempted. The Galerkin method

was applied to the weak form of the EPFBE. A bilinear Lagrange polynomial

trial solution and specially derived synthesis function trial solution

were used. The Galerkin method proved infeasible because the integrals

resulting from this method could not be efficiently evaluated either

numerically or analytically. To solve this integration problem, the

collocation method was attempted. A trial solution consisting of cubic

splines and a simply defined angular synthesis function was used. The

collocation method allowed the analytic evaluation of the resulting inte-

grals but forced a fixed anisotropy on the solution. The multigroup

method applied to the EPFBE resulted in a nested integral problem involv-

ing the source terms of this equation. The complexity of this nesting

problem increased proportionately with the number of energy group used.

This research demonstrated that the finite element method cannot be cost

effectively used in solving the EPFBE for transport problems requiring

viii



complex geometries, anisotropic scatter, and a multigroup solution.

Criteria were developed from this research that provides guidelines for

pursuing future work related to the EPFBE. Recommendations based on

these criteria are made.
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1. introduction

T'.c. steady-state transport of neutrons and gamma rays from a point

source of simulated nuclear weapon radiat on in the atmosphere is a prob-

lem of fundamental importance in nuclear effects calculations. The equa-

tion whose solution prescribes the steady-state, neutral-particle distri-

bution in the phase space of position, particle direction, and particle

energy is the Boltzmann transport equation. This equation is a linear

form of the Boltzmann equation used in several fields of physics and is

a statement of particle conservation as applied to an infinitesimal ele-

ment of volume, direction and energy, and may be written as

-~ ~~ (P,.Ej = , ,j(l.1)

where

r = the spatial position vector, in units of distance,

E = the particle energy,

A = a unit vector in the direction of particle motion,

V = the gradient operator

,,Ej = the particle source density, in particles/unit volume/unit

energy,

i .,,E = the angular particle fluence, in particles/unit area/

steradian/unit energy,

cT-(r) = the macroscopic total interaction cross section at posi-

tion r and for energy E, per unit distance, per unit

energy,

( &-,s) = the macroscopic differential scattering cross section

at position i for a particle of direction with energy

ii' .. -. , . _, , .



• A

E scattering to a directionA and energy E. The units

are per unit distance per steradian per unit energy.

Analytical solutions to this equation occur in only special cases

where simplifying assumptions can be applied (Reference 1). Unfortunately,

these assumptions do not generate a realistic scenario for performing

nuclear effects calculations, thus requiring the use of numerical methods

in these types of transport problems.

The scenario most used in performing nuclear effects calculations

is a nuclear air burst detonation. Analytically this scenario is modeled

by a two-dimensional cylindrical geometry (azimuthal symmetry assumed)

composed of air with an exponentially varying density over a flat ground.

This type of configuration is referred to as air-over-ground geometry.

In this type of configuration, there is an interface at the air-ground

boundary across which a discontinuous change in density occurs. The

importance of including the ground was demonstrated by Straker (Ref. 2)

who showed a significant effect on the atmospheric neutron distribution

due to the presence of this relatively high density medium.

The conservative form of the Boltzmann transport equation for the

selected cylindrical geometry can be written as

I' 4 2 Co-1(X) a(e1~e'I'a. ) _ g(ssrj(-J~j ir 'f' ,?A.Ej

where

e = the distance in the radial spatial direction

1= the distance in the axial spatial direction

2



Ak = direction cosine with respect to the Z-axis

= azimuthal angle describing particle direction

Figure 1 describes the coordinate relation between e, 1,A,X.

In Eq. (1.2) the energy dependence-of the angular particle fluence

is represented as a continuous function. In. practice the energy variable

is divided into a number of finite, discrete energy groups. This discre-

tization of the energy variable is known as the multigroup method (Ref. 1)

and is used to derive the set of multigroup transport equations by inter-

grating Eq. (1.2) over each discrete energy group. Applying the mu'ltigroup

method to Eq. (1.2) yields

1 7UA~e COS(1) 4) e T AL~i.l (sp -r rs" P.~~~ Ic'Ai )

SeA) + c. !(1 .3)

where

= the energy group designator, g=l being highest energy group

G = total number of energy groups

E ' ( e,,) = the angular particle fluence for energy group g, and

"0, = the macroscopic differential scattering cross section

at position (e a i) for a particle of direction (i', )

in energy group g' scattering to a direction ({, x) and

to energy group g.

To complete the specification of this analytical problem, boundary

conditions must be assigned to Eq. (1.3). One boundary condition often

used is referred to as a vacuum boundary condition and is represented as

3
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A 0 0 (1.4)

where

= the position vector representing a spatial location on an

exterior surface

= a unit vector normal to the exterior surface located at F"

The second boundary condition is applied along the axis of the cylinder

at ( =0 and is referred to as the symmetry or reflective boundary condi-

tion. This boundary condition can be written as

1 (-)A (1.5)

where -A' is defined by A. and-(A"..AL 0

A nuclear burst is represented as an isotropic point source in the

atmosphere. In the cylindrical air-over-ground geometry the isotropic

point source is located along the axis of the cylinder ((D=0) at the

desired burst altitude (ZB). Mathematically this point source can be

represented as

Ll 7(1.6)

where

= isotropic source in group g

= Dirac delta function

During the course of this dissertation it became necessary to define

another source term known as the first-scatter source. This source can

be expressed as

r r.'_,1 (1.7)

where

5



- position vector of the nuclear burst

4 -position vector in spatial domain

.-0 = direction vector aligned with the@-( vector at the spatial

position .

A O T along the ray defined by A 0 ' -

See Fig. 2 for a clarification of the above definitions. The reason for

using the first-scatter source will be explained in latter chapters.

Combining the previously derived results leads to the following

form of the Boltzmann transport equation:

e fd -x"

4. , - "tL ;  + ( ex "
A Ci)- it OT2n

• (e' C ,i,) t I ( A .

"In j I-, 1ja + zfd ,fd 'O' ' ,-A.,1)I c e,iq'

The sum over energy groups has been terminated at g because scatter

occurs only from higher to equal or lower energies.

The most common techniques used to solve the Boltzmann equation for

the air-over-ground problem are lonte Carlo, discrete ordinates, and Mass

4 1Integral Scaling (MIS). Each method is deficient in some respect. Monte

Carlo demands a substantial amount of computational time due to its

statistical nature (Ref. 3). Discrete ordinates (Refs. 4 and 5) is

susceptible to a computational anomaly called the ray effect. All attempts

to eliminate or mitigate this computation anomaly in the discrete ordi-

nates method have resulted in a substantial increase in computational

time (Refs. 6-12). MIS (Refs. 13-15) cannot provide accurate results

6
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near the air-ground interface at slant ranges less than 1000 feet. The

deficiencies exhibited by these commonly used solution techniques

motivated several new approaches for solving transport problems.

Even-Parity Equation and Space Angle Synthesis

In 1961 Vladimirov (Ref. 16) derived a self-adjoint form of the

Boltzmann transport equation known as the second-order even-parity flu-

ence form (EPFBE). The monoenergetic form of this equation can be repre-

sented as

-. KMf J AV (1.9) P~

where all previous definitions apply and the following are presented

-A) (even-parity fluence) (1.10)

S= z (,-iP-,,-) (odd-parity source) (1.11)

* 'S" = , (even-parity source) (1.12)

The two operators Ku and G are positive definite and self-adjoint (Ref.

17) and can be represented as

447

where

e(wj = odd Legendre coefficients

Rb (A'4) = th order Legendre polynomial

8



(even-parity differential scattering cross section)

The vacuum boundary condition becomes

t V IP %,): 0
for r on the vacuum surface and A. r 0

For the reflective boundary condition

?(-

where r is on the reflective boundary and jj' is defined by 1 .: ' I.

and(Ax).,= 0 . The derivation of Eq. (1.9), Eq. (1.13) and the

boundary condition is presented in Appendices A and B respectively.

In conjunction with this self-adjoint form, a functional was

derived whose Euler equation is the even-parity fluence equation (Ref.

17). Kaplan and Davis (Ref. 18) used this functional to solve a simple

monoenergetic Milne problem with isotropic scatter. They derived a

coupled set of differential equations that represented the Euler equa-

tions of the functional for the various regions of the spatial domain.

This set of equations was solved by finite difference methods. The

angular dependence of the neutron distribution in their problem was

represented by trial functions obtained from an intuitive knowledge

of the true solution. The use of such predetermined functions is

known as flux synthesis (Refs. 19-22) and provides a method of intro-

ducing a priori knowledge of the particle distribution into the trial

solution. This a priori knowledge may come from experience, subsidiary

calculations, or intuition.

9



Further success of the flux synthesis technique was achieved by

Roberds and Bridgman-(Ref. 23) who applied the flux synthesis method

to an air-over-ground problem using.a-weighted residual formulation of

the Boltzmann transport equation. Their results were within ten percent

of those generated by discrete ordinates and reduced the computational

time by a factor of seven. Also significant is the fact that their

results had no ray effects, since the chosen synthesis functions changed

the angular mesh at each spatial point and thus did not allow any 5pecific

rays to penetrate the entire spatial domain.

Miller, Lewis, and Rossow (Refs. 24 and 25) applied the even-

parity fluence functional with a fin'ite element trial solution in space

and angle to solve both a one and two-dimensional monoenergetic neutron

transport problem in plane geometry. In the 2-D problem isotropic

sources and scattering were used. From these solutions, the authors

concluded that the finite element method could produce results with a

computational time savings that were comparably accurate to discrete

ordinates results. Also, as in the case of synthesis functions,

finite elements used with the EPFBE are not subject to ray effects. A

finite element method has been incorporated into a production computer

code called TRIPLET (Ref. 26). This code uses the finite element method

to represent only the spatial variation of the neutron distribution

in the first-order Boltzmann equation. The angular variation is repre-

sented by discrete ordinates and thus this code is subject to ray

effects.

In 1974 Kaper, Leaf, and Lindeman published a study (Ref. 27) which

evaluates several finite element methods for solving the multigroup

10
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neutron transport equation using the variational form of the even-parity

equation. Their final. conclusions were unfavorable and lead to the

recommendation that "the use of high order approximation procedures,

based on finite element methods and applied to the self-adjoint form of

the transport equation does not provide a viable alternative to the use

of the discrete ordinates methods, applied in combination with either

finite differences or finite element methods to the standard form of the

transport equation."

These authors made this conclusion based on their experience in solv-

ing reactor type problems. In this problem ray effects do not occur and

thus would not have influenced the quoted conclusion. In the air-over-

ground problem the ray effect is predominant and the elimination of this

effect from a transport solution is important. Though the EPFBE is appli-

cable for use in both types of transport problems, its value in mitigating

or eliminating the ray effect is most pronounced in an air-over-ground

problem. Kaper, Leaf, and Lindeman's conclusion does not apply to trans-

port problems that exhibit the ray effect.

In 1975 Briggs, Miller, and Lewis (Ref. 28) did an extensive theoret-

ical study to determine the reasons behind the ray effect eliminating

property of the EPFBE. Their approach was to solve the self-adjoint

form of the Boltzmann equation cast in a variational formulation using

three different angular representations. One angular formulation was

the standard discrete ordinates treatment of the angular domain. The

other two formulations incorporated either piecewise constant or piece-

wise bilinear finite elements as angular trial functions. Solutions

obtained from these various formulations demonstrated that both finite

11



element angular representations eliminated ray effects, while the dis-

crete ordinates treatihent of the angular variable did not. To explain

their computational results Briggs,-et'al, demonstrated that the

operator of the self-adjoint form of the Boltzmann equation changed

from a hyperbolic to an elliptic form when the finite element angular

representation replaced the discrete ordinates treatment. This change

was synonymous with the disappearance of the characteristic lines along

the discrete ordinates directions of neutron travel and was equivalent

to introducing into the streaming operators fictitious derivatives

normal to these lines (Ref. 29). These derivatives result from the

averaging of the transport operator over the solid angle support of the

finite element basis functions. This averaging allows a coupling of

angular directions not present in the discrete ordinates method and

eliminates the ray effect from transport solutions.

Purpose of the Research

The second order even-parity form of the Boltzmann transport equa-

tion offered a sound theoretical basis for eliminating the ray effect.

However, a method based on this equation is much more difficult to pro-

gram than the discrete ordinates method and requires the added expense

of evaluating many integrals. Previous applications of this equation

had been limited to one dimensional problems with linear anisotropic

scatter and two-dimensional plane geometry with only isotropic scatter.

Extending the use of this equation to two-dimensional cylindrical geom-

etry with anisotropic scatter represented a significant departure from

past work. The purpose of this research was to determine the feasibility

of eliminating the ray effect when solving the air-over-ground problem by

using the EPFBE.

12 '



In Chapter II the Galerkin method is applied to the weak form of

the EPFBF. Both a finite element and synthesis trial solution were used.

The finite element trial solution was a tensor product consisting of

bilinear Lagrange polynomials. The synthesis trial solution used bi-

linear Lagrange polynomials to represent the spatial variation of the

neutron fluence and a ellipsoidal synthesis function expansion to

approximate the angular dependence. The results of this chapter demon-

strate that neither the Galerkin or Ritz method would provide a feasible

means of solving the air-over-ground problem since the resulting infe-

grals cannot be efficiently evaluated either numerically or analytically.

In Chapter III the collocation method is applied to the EPFBE. A

trial solution consisting of cubic splines and specially derived angular

synthesis functions were used. This method allowed the analytic integra-

tion of the resulting integrals, but introduced a numerical deficiency

associated with the odd-parity fluence transformation. This deficiency

is related to the requirement that the derivatives with respect to all

phase space variables of the selected trial solution contain the neces-

sary information to accurately represent the anisotropic portion of the

Boltzmann fluence.

In Chapter IV the problems that result from applying a multigroup

method to the EPFBE are outlined. These problems center on the odd-parity

source term and the dependence of this term on the odd-parity fluence.

The nested integrals that result are complex and their evaluation would

lead to problems similar to those encountered in Chapter II.

Chapter V presents recommendations and conclusions.

' '" " " ll '11 . . .. . ... . . . . . .. .. .. " .. . i II



II. Weak Form Equation and Galerkin Method

Introduction

In this chapter the weak form of.the EPFBE is formulated for the air-

over-ground problem using the Galerkin method. Evaluation of the integrals

that result from this method is attempted using both analytical and numer-

ical integration techniques. Trial solutions consisting of linear Lagrange

polynomials in space and a specially derived synthesis function in angle

are used to approximate the even-parity fluence. Different combinations
0*

of the above integration techniques and trial solutions are attempted.

The results demonstrate that the Galerkin and Ritz methods introduce too

much complexity to efficiently assemble a global matrix representation

of the EPFBE for an air-over-ground problem. This statement applies in

general to the Lagrange polynomial trial solution and specifically to

the synthesis trial solution.

Weak Form and Functional Representations

The Galerkin and Ritz methods are commonly used in the finite ele-

ment method. The Galerkin method is applied to the weak form of an equa-

tion. The weak form of the EPFBE can be represented as (see Appendix C)

A1Lz~ VeC~) JK (A V K 4) > +f( ((,)Gci>ic (2.1)

where CL ) is referred to as a weight function. V represents the

spatial domain, SV is the part of the surface bounding the spatial domain

on which the vacuum boundary condition is applied, and
<arA,606,/t)> aP A, bC c oeA Id (2.2)

f4
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The Ritz method is applied to a functional that represents an equation.

For the EPFBE a functional representation exists and can be written as

FL YccAAiJ <ar3{KV P) OQA),c~)I'd~ (2.3)

+~ -2 < WCIS)X>)I

where

raO.A > Jo sJ A(rL) a{)O (2.5)

The solutions to Eqs. (2.1) and (2.3) naturally satisfy the vacuum boundary

condition. The reflective boundary condition is essential for both equa-

tions and must be imposed.

If the same trial solution is used in solving the EPFBE, the Ritz

and Galerkin methods generate an identical set of simultaneous algebraic

equations. This occurs because the Ku and G operators in this equation

are both positive definite and self-adjoint. The Galerkin method was

selected for use in this chapter, because it represented a convenient

starting point for determining the feasibility of applying the finite

element method to the EPFBE.

Galerkin Method

The Galerkin method falls under the broader category of weighted

residual methods. These methods assume that the exact solution of a

differential equation is not known and must be approximated, thus intro-

ducing into the equation an error called the residual. The weighted

residual method requires this residual to vanish in some average sense

15



over the domain of definition of the dependent variable. As an example

consider a function 4(0) defined over some domain D dependent on the

variables represented by the vector "... Let the behavior of 4(c1 in

D be given by

L =(2.6)

where ;&t) is a known function of the same independent variables. Eq.

(2.6) can be rearranged to give

Lcv~fw 0) (2.7)

Since 40) is not known, an approximate solution must be used. Let the

approximate solution be represented by . Substituting ct) into

Eq. (2.7) yields

L Y-f fa 0 (2.8)

or stated in another manner

L c~~ -u..(2.9)

Rc) is called the residual and results from the use of the approximate

solution (0t) . Multiplying Eq. (2.9) by the weight function Cc ) and

integrating over the domain D results in

d- (2.10)
f~ LOJC/CF~JL %C4

is often represented by a linear combination of a linearly inde-

pendent set of known functions:

16



In Eq. (2.11) the a 's are the constant coefficients and the Q 's repre-

sent .e known functions. Eq. (2.11) is called a trial solution. Insert-

ing Eq (2.11) into Eq. (2.10) gives

Qr5 Cw M C cc O(.2j L ~1Q O~ 5FJC, d 1)c)C d (2.12
0 0

Requiring that the weighted residual vanish (Ref. 30) yields

f g )'( ) c0 0. (2.13)

Eq. (2.13) implies that the weighted residual method determines a set of

a coefficients that requires the residual function to be orthogonal to

the weight function and thus forces-the residual to vanish in an integral

or average sense. The final form of the weighted residual method is

L Q C

If the weight function is allowed to be any linear combination of the

same known function as the trial solution, i.e.

4~~ ~ 0.V 1b~ (2.14)

then the Galerkin method is defined and requires

L a4 j)C 0 X. 0 (2.15)

Transport problems are normally of such complexity that an analytical

solution is not possible. These problems necessitate the use of a trial

solution that describes both the spatial and angular variation of the

neutron fluence. Such a trial solution for the even-parity fluence can

be presented as

17



N eq

'f'~): 44 -S~cPtJ A. 1A) (2.16)

where S(M) represents a known function to approximate the spatial

variation and A[(A) plays a similar role for the angular dependence.

If the Galerkin method is used with the trial solution in Eq. (2.16),

then the proper form of the weight function is
OVM

K1La I

Substituting Eqs. (2.16) and (2.17) into the weak form of the EPFBE,

Eq. (2.1), yields

Aj M (2.18)
.jaj V

P)f L5 A aG I(Sc Aj(A>) + s,c',LA, .5C~> ttS&()

L 11 2.1

Eq. (2.18) is referred to as the Galerkin weak form equation throughout

the remainder of this dissertation.

Numerical Integration

The trial solution initially used with Eq. (2.18) consisted of

piecewise bilinear Lagrange polynomials to approximate both the spatial

arid angular variation of the fluence. These polynomials have only C 0
continuity (continuity of the function only). This degree of continuity

j is all that is required since the highest derivative in the Galerkin
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weak form equation equals one (Ref 31). In any given element, the form

of these polynomials-is given by

i Lx,y) a ll xy+bCK Ly.d' (2.19)

where the i subscript refers to a particular node in the discretized

domain consisting of rectangular elements. Since four nodal degrees of

freedom exist in each rectangular element, the coefficients in Eq. (2.19)

can be determined. These coefficients satisfy the requirements that at

one node Lz Lx.y) equals one and at the other three the polynomial is

zero. These constraints lead to the classic tent function illustrated

in Fig. 3. The same procedure is followed in determining the other tent

functions for the remaining nodes in the rectangular element and also

the remaining elements in the mesh. This procedure is given in more

detail in Appendix D.

The Lagrange polynomials representing the spatial and angular varia-

tion of the fluence are combined using a tensor product. In this tensor

product, the spatial and angular dependence of the fluence is assumed

separable in a manner similar to the Pn method (Ref. 1). Using the Galerkin

method with this bilinear Lagrange polynomial tensor product trial solution,

one defines the following representations for the even-parity fluence and

weight function respectively:

E = L~c~ L~(2.20)

£ciA): Lw..: LLLOL (2.21)

where M represents the total number of spatial nodes and N the number

of angular nodes.
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Fig 3. Tent Function Defined Over Four Rectangular Elements
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The trial solution presented in Eq. (2.20) was used (Ref. 26) to

find the solution of a monoenergetic transport problem involving two-dimen-

sional plane geometry and isotropic scatter. The success of this appli-
-t.

cation depended in part on the simplicity that the isotropic scatter

assumption introduced. Scattering from one angular direction to another

is represented in the first order Boltzmann equation by the differential

scattering cross section c( '4A) for scattering from A' to A

The differential scattering cross section is normally approximated by an
4-

expansion in terms of Legendre polynomials, i.e.
p

a st'- &) z Z il Av'I (2.22)

where P is the £"order Legendre polynomial, mit is a spatially

dependent coefficient, and p represents the order of the approximation.

In the case of isotropic media the A'- /. variable is replaced with q

which represents the cosine of the angle between A' and /L and is

expressed as

Z J- co(x- Z'(2.23)

For the EPFBE the definition presented in Eq. (1.15) and (1.16) leads to
p
e(ap j:i'J (u) (2.24)

a: V@, a

The assumption of isotropic scattering reduces the complexity of Eq. (2.24)

and (2.25) to

l (2.26)
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C__ A)= 0 (2.27)

In an air-over-ground problem, the differential scattering cross sec-

tion is expressed as a third order Legendre expansion (P=3). The

introduction of anisotropic scattering significantly complicates Eq. (2.18)

and the process of reducing this equation to a matrix form. The complica-

tion that occurs in the Gg and Ku operators can be seen by com r-ring the

isotropic scattering case with an anisotropic representation. Combj.ing

the definition of these operators presented in Eqs. (1.13) and (1.14) with

the isotropic scatter results of Eqs. (2.26) -nd (2.27), leads to the

following representation of these operators in Eq. (2.1):

' (2.28)

A~vA 3L~~A (2.29)

Eqs. (2.28) and (2.29) demonstrate two simplifications that result from

the isotropic scatter assumption. The first is the absense of the

integral term in the Ku operators, since C'4Au) = 0 . The second is

the simple form of the integral in the G g term that results from the Po

Legendre polynomial equaling one. Using the trial solution of Eq. (2.20),

this global integral becomes an evaluation of the bilinear Lagrange poly-

nomials over the angular domain. Since these polynomials are identically4I

defined over each angular element, the integral can be evaluated using

the results of a single canonical element evaluation. The value of this

integral for any angular element can be found by simply multiplying the

area of the angular element by the canonical result. (See Appendix E

for more detail.) If a more precise value is necessary, only the single
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canonical evaluation must be repeated. This simple procedure is possible

due to the definition.of this integral.

The integrals resulting from both. the G and Ku operators couple all

scattering directions in the angular domain and thus must be evaluated

over all angular finite elements. This global definition is contrary

to the other integrals resulting from the definition of the weak form

equation. These integrals are defined locally over a single spatial

and angular finite element and during the assembly of the global matrix

are evaluated over a single element at a time. The difference between

a local and global definition can be clarified by examining the term in

Eq (2.1) that contains the Gg operator.

.S~ ,7L(cit)&w~%~A Joy~ACA A*~ ']i t&v ; (2.30)

To determine the value of one element in the global matrix, the two outer

integrals of Eq. (2.30) are evaluated over a few spatial and angular

finite elements. For the same single value the inner integral must be

evaluated over the entire angular domain. Since the neutron fluence is

highly anisotropic near the source in an air-over-ground problem the

angular domain requires a refined discretization to accurately approximate

this type of distribution. Thus evaluating the global integrals result-

ing from the K and Gg operator could be quite costly, if the definition

of the integrand prohibited the effective u.e of canonical integration.

Such is the case, when an anisotropic scattering process is used.

The Gg and Ku operators take within Eq. (2.1) the following forms

in the anisotropic case:

'ffA I d A' (2.31)
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The degree by which these forms deviate from the isotropic case depends

on the order of the even and odd-parity differential scattering cross

sections. To illustrate the complications introduced by anisotropic

scattering in these terms, assume a first order scattering representation

involving the P and P1 terms of the Legendre expansion. This order of
0

scattering approximation does not alter the definition of the G tecm

presented in Eq. (2.28), but does add the integral term to the Ku opera-

tor, i.e. ''Al
Substituting the definition of into Eq. (2.33) results in the follow

ing formulation for the global integral term.
] ( = , ,(. / '. ~ycx'o(' -(2.34)

The two integrals in Eq. (2.34) are considerably more complex than those

resulting from the G operator due to the presence of the gradient term.

The increased complexity of these integrands affect the order of quadra-

ture needed to accurately evaluate them and thus the computational time

required. Another significant deviation from the isotropic case is the
presence of J7T and coax-ic) within these integrands. These func-

tions cause the integrand to be defined differently in each angular

finite element, thus altering the basic premise that allowed the efficient

evaluation of the integral in the isotropic case. The presence of these

functions in the integrand now force the global integral to be evaluated

over each angular finite element, rather than a single canonical element.
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Since this global evaluation must be repeated for each angular quadrature

point, the expense of.forming a global matrix representing the Galerkin

weak form equation is greatly increased.

The problems demonstrated with a P1 anisotropic scattering representa-

tion for the Ku operator become more severe with a P3 representation and

spread to the global integral term of the Gg operator. This G operator

is affected by the P2 term of the Legendre expansion that introduces

J7T' and Cos(x-x')to the integrand of this integral. The Legendre

expansion of the angular scattering significantly increases the com-

plexity of an anisotropic scattering problem compared to an isotropic

scattering problem. This complexity is primarily concentrated in the

global integrals resulting from the G and Ku operators.

A modified computer code (Ref. 32) was used to determine the exact

effect anisotropic scattering had on computer execution time and accuracy.
This code assembled the global matrix resulting from the Galerkin weak

form equation Eq. (2.18) using a bilinear Lagrange tensor product trial

solution. The evaluation of all integrals resulting from this equation

was performed during assembly using numerical integration. This integra-

tion was carried out over a canonical representation of the spatial and

angular elements. A flow diagram of this code appears in Appendix H.

The problem selected to examine the effect of anisotropic scattering

was a simple air burst problem. The spatial domain consisted only of air

and was discretized into a single rectangular finite element extending

from 0 to 100 meters in both the e and Z directions. The angular domain

was zoned into a single rectangular finite element with the u variable

extending from 0 to 1 and X from 0 to7T. The symmetry of the even-parity
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fluence allowed this reduced angular domain. All cross sections were

taken from the first energy group of.the DLC-31 set generated by the

Radiation Shielding Information Center, Oak Ridge, Tennessee (Ref. 34).

The vacuum boundary condition was satisfied naturally on three boundaries

and the reflective boundary condition was enforced on the cylinder axis.

The global matrix resulting from the definition of this problem was

16 x 16.
0#

Four problems were run on the CDC-6600 computer using this code.

These problems differed only in the order of the scattering approximation

and quadrature set used. The effect of increasing the order of the scat-

tering representation was measured by two parameters. One parameter was

the computational time required to compute and assemble a global matrix.

The second parameter was concerned with the sign of the eigenvalues related

to this matrix. The sign of all eigenvalues of a global matrix from the

Galerkin weak form equation should be positive. This results from the

positive definiteness of the Ku and G operators used in this equation.

A negative eigenvalue would indicate that the elements contained within

a global matrix were inaccurately computed. Since all computations in

the Galerkin weak form equation center around the evaluation of integrals,

this would indicate that the order of the quadrature set used was inadequate

and would need to be increased. Increasing the order of the quadrature

would increase the computational time required to assemble a global matrix.

Thus, it can be seen that the two evaluation parameters are related and

together indicate the relative efficiency of assembling an accurate global

matrix representation of the Galerkin weak form equation.
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The results of the four sample problems are presented in Fig. 4 and

substantiate the analysis previously presented. Problem one is analogous

to the analysis that used an isotropic scattering representation. Here

a simple two point Gaussian quadrature set was adequate to generate an

accurate global matrix. Problem two and three demonstrated the increasing

complexity that occurred as the order of the scatter approximation increased.

For both problems a two point Gaussian quadrature set was used. The

increased complexity was reflected in the number of negative eigenvalues

associated with the respective global matrices. Problem four was an

attempt to increase the order of the quadrature set for a P=l scattering

approximation. This problem demonstrated that changing the order of the

quadrature set substantially increased the computational time required

to generate a global matrix. This occurred because of the six nested

integrals that are contained in the Galerkin weak form equation. If

Eq. (2.33) is substituted into the first term of Eq. (2.1) the following

would result

* Jf Fa,(J& JZ) (A v V 'LAJ j c dxde dAop (2.35)

Eq. (2.35) clearly illustrates these nested integrals. Evaluating these

integrals requires Q6 evaluations per matrix element, where Q represents

the number of quadrature points for each variable. For a two point quadra-

ture set 64 evaluations are needed per matrix element and four quadrature

points would require 4096 evaluations per element. Considering the 256

elements in the matrix the substantial increase in computational time is

not surprising.

The numerical integration procedure used in the computer code that

generated the results presented in Fig. 4 was not efficient. An analysis
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Order of Number of Number of Number of Computational
Problem Scatter Quadrature Pts/ Positive Negative Time
Number Approximation Independent Eigenvalues Eigenvalues (Sec)

(P) Variable - -

1 2 16 38

2 1 2 10 6 41

3 3 2 9 7 45

4 1 4 ---- >180

Fig 4. Results Using Galerkin Weak Form Equation
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of the second term in Eq. (2.35) demonstrated it could be separated into

9 spatial and 27 angular integrals. The evaluation of these integrals

using a four point quadrature set would require 576 evaluations per matrix

element. Though the 576 evaluations represented a significant reduction

from the 4096 previously required, it still was not enough reduction to

support the use of numerical integration.

Certain requirements of the air-over-ground problem oppose the cost

efficient implementation of a finite element solution technique usig

numerical integration. This transport problem requires the use of a

third order Legendre expansion to approximate the scattering process.

This expansion used in the weak form of the EPFBE would significantly

increase the complexity of the resulting integrals. As demonstrated in

Fig. 4, complex integrals require the use of higher order quadrature sets

to assure the positive definiteness of a global matrix. The air-over-

ground problem also requires a very finely zoned angular and spatial

domain. Such zoning intensifies the problems associated with evaluating

the globally defined angular integrals and increases the number of local

element integrations that must be done. Since the angular integrals

resulting from the weak form of the EPFBE can not be efficiently evalu-

ated by canonical techniques, a computational cost inefficiency results.

The combined effect of high order quadrature sets and refined meshing

significantly offset even substantial gains made in improving the

efficiency of a numerical integration process. For this reason further

work based on a finite element method using numerical integration was

stopped and the use of analytical integration techniques were attempted.

The success of previous work using the EPFBE functional was based

on the isotropic scattering assumption. This assumption automatically
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resolved all the problems that rendered either this formulation or the

weak form equation too complex for efficient numerical solution.-

The numerical integration problems encountered using the Galerkin

weak form equation are not unique. Strang and Fix (Ref. 33) devote an

entire section in a chapter entitled "Variational Crimes" to this problem.

In this section they theoretically discuss problems similar Lo those

presented in this chapter and conclude that "it is very important to

control properly the fraction of computer time spent on numerical integra-

tion." As evidenced by the sample problems, the computer time necessary

to evaluate the integrals resulting from the Galerkin weak form equation

has not been properly controlled.

Analytical Integration

A natural solution to the numerical integration problem was to

attempt the analytical evaluation of the integrals associated with the

Galerkin weak form equation. This method of integration would alleviate

both the accuracy problem and computational time problems met in the

previous section. Analytical integration would be precise and require

only a single function evaluation per finite element, instead of the

many evaluations required by numerical integration. The structure of

the integrals resulting from this equation were known to be complicated;

however, it was horcJ that the MACSYMA (Ref. 34) symbolic algebraic mani-

pulating system would provide the necessary simplification. Two differ-

ent trial solutions were used in attempting this analytical integration.

The first trial solution was the tensor product consisting of

bilinear Lagrange polynomials used in the previous section. The first

term on the right-hand side of Eq. (2.18) was input to the MACSYMA pro-

gram by defining the individual terms that composed it. As an example,
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the pu variable represented by Eq. (2.23) was defined in MACSYMA. Next

the P and P3 Legendre polynomials were defined in terms of A4 . Using
h3

the preceding two definitions the odd-parity differential scattering

cross section was constructed. The Lagrange polynomials representing

both the spatial and angular variation of the neutron fluence were next

defined. In the first term of the Galerkin weak form equation both the

weight function and trial solution is operated upon by kv . In cylin-

drical geometry this operator is defined as

A V (2.36)

MACSYMA was programmed to perform the operation defined in Eq. (2.36) on

both the previously defined weight function and trial solution. With

all the individual components defined, MACSYMA assembled the first term

of the Galerkin weak form equation.

Several different techniques were attempted to perform analytical

integration over the required six nested integrals. One attempt involved

integrating the whole assembled term. This attempt was only successful in

performing the two intermost integrations over the u' and x' variables.

Further integration was impossible, since the number of terms generated

by the successful integrations exceeded the memory capacity of MACSYMA.

This large number of terms developed because of the indefinite integration

limits and the complex nature of the trigonometric functions that result

from the assembled term. The integration limits were arbitrarily set

so the dimensions of the finite elements in the angular and spatial domain

could be varied without repeating the work on MACSYMA. The use of these

arbitrary limits always generated two terms for each integration, since

an upper and lower limit evaluation was necessary. The complex trigono-

metric terms resulted from the product of those involved in Eq. (2.36)
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and the definition of p# . Integrals involving these terms required

reduction techniques for evaluation. These reduction techniques always

generated several additional terms. The exact number of the terms was

dependent on the power of the exponent associated with the trigonometric

function.

To resolve the memory capacity problem, several different MACSYMA

functions that optimized the use of memory were tried. The use of these

functions did not solve the memory problem thus motivating the use of a
a-

new approach.

The previous approach attempted to evaluate the entire first term

of the Galerkin weak form equation, while this new approach sought to

simplify the expression into a number of smaller less complex terms. To

accomplish this goal a special MACSYMA function was written that auto-

matically searched the string of simplified terms to identify those that

have the same form of variable dependence. Once identified the coeffi-

cients of these terms were added together, thus reducing the total number

of terms requiring evaluation. Several attempts were made to implement

this approach and use this specially derived MACSYMA function. In all

cases memory capacity again was exceeded during the simplification process.

A careful examination of the first term of the Galerkin weak form equation

demonstrates this expression can be simplified into over 29,000 distinct

terms (see Appendix F). MACSYMA does not have the capacity to generate

this number of terms and no successful means was found to generate only

a small portion of these terms at one time.

These two approaches failed for reasons similar to those found in

attempting numerical integration. Once again the complexity of the inte-

grands contributed to the failure of using the Galerkin weak form equation.
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The integral evaluation of these functions necessiated the use of reduction

formulas that required the use of significant amounts of memory in MACSYMA.

The nested integral problem also surfaced. In the analytical integration

attempt this problem manifested itself by taxing the limited memory

resources available to MACSYMA. Therefore, any means that would reduce

the requirement for this memory would improve the chances of successfully

using this program.

The space angle synthesis (SAS) method discussed in Chapter I offered0o

the possibility of reducing these memory requirements. The Lagrange poly-

nomial trial solution used in an air-over-ground problem requires sixteen

distinct terms. Substituting a global synthesis function representation

for the angularly dependent Lagrange polynomials would condense the form

of the trial solution. This reduction would result from replacing the

four terms of the bilinear Lagrange representation with a single term.

The choice of synthesis functions was influenced by the work of Roberds

and Bridgman (Ref. 23). These authors used an off-centered ellipsoidal

function to represent the angular variation of the neutron fluence in

an air-over-ground problem. The most significant feature of this

ellipsoidal function was its ability to be analytically integrated in

a weighted residual formulation of the first order Boltzmann equation.

Additionally, the effectiveness of this function was demonstrated by

accurately representing the angular variation of the neutron fluence and

generating ray effect free scalar fluence solutions.

The off-centered ellipsoidal function used by Roberds and Bridgman

needed modification for use in the Galerkin weak form equation. The

even-parity fluence as defined in Eq. (1.10) is an even function in the

angular variable. This property forces the ellipsoid to be centered.
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The expression for a centered ellipsoid, symmetric about the position

vector from the point-source to position (e, P ) is (see Fig. 5)..

E1u I -b C - j (2.37)

where

E(A ) is the distance from (ea.1) to the ellipsoidal surface.

b denotes the length of the minor axis, iCu&X = the cosine of the angle

between R and the axis of revolution

"* , = cosCtL4 .q + S,,5,1(V'L4 1 a Co 3%) .

Ther L parameter is now a function of the (D, I) coordinates, since it

is dependent on the spatial location. This dependence is defined in

the following manner:

(e- esi

( e - )

COS(P t ) Z ef° ( -I

where the coordinates (&et) represent the spatial location of the

point source of weapon radiation. In the air-over-ground problem

since the point source is on the axis of the cylinder.

The angularly dependent part of the trial solution Eq. (2.20) was

modified to include these ellipsoidal synthesis functions. The trial

solution chosen replaced the angularly defined bilinear Lagrange poly-

nomials with a three term ellipsoidal expansion

~ ;Et>EjA (2.38)
,'I j -

where SjI jis still the spatially defined bilinear Lagrange polynomials.

The three ellipsoidal functions were chosen to represent the expected
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Fig 5. Ellipsoidal Synthesis Function
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spectrum of angular variation that would exist for an air-over-ground

problem (see Fig. 6)... E,(c. was chosen to represent the extremely

anisotropic nature of the angular fluence near the point source. EttJ

represented the isotropic nature of the angular fluence at large distances

from the source. EzCJ was chosen to act as a trinsitional shape

between the two others. The b parameter in Eq. (2.37) determined these

shapes. The mixing of these shapes is accomplished by the coefficients.

The value of these coefficients is determined by solving the plooal

matrix representing the weak form of the even-parity equation.

Analytical integration of these ellipsoidal synthesis functions

in the weak form of the even-parity equation was not possible. This

can be illustrated by examining the simplest term in Eq. (2.1).i
<(- (2.39)

Substituting Eq. (2.38) and the proper definition of CcOrt. for the

Galerkin method results in:

a ~ cL(.Jf( S E,(c.G(S. -jE (A ) (2.40)

L , Iz.3

If isotropic scatter is assumed the following angular integral would

result from Eq. (2.40)

, A) Ew ot (2.41)

By substituting Eq. (2.37) into the above, the following results:
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0LJ ' Jtj .- .' ...,,-. -, # , (2.42)

Eq. (2.42) could not be analytically, integrated by the MACSYMA program.

The weighted residual technique applied to the first order Boltzmann

equation by Roberds and Bridgman never produced a multiplication of two

ellipsoidal functions. This multiplication occurred because the Galerkin

method was used.

rumerical integration of the ellipsoidal trial function was also

attempted. The computer program previously described was modified to

replace the bilinear Lagrange polynomials defined over the angular

domain with the ellipsoidal functions. All derivatives of this function

needed for an evaluation of the Galerkin weak form equation were analyti-

cally calculated and formulated in FORTRAN by MACSYMA. Sample problems

using this modified code demonstrated the need for high order quadrature

sets to accurately evaluate the resulting integrals and thus properly

define the global matrix. As before, the use of these higher order quadra-

ture sets made the computational time necessary to evaluate one spatial

finite element prohibitive for an air-over-ground problem.

Further efforts to use the Galerkin weak form equation to obtain

solutions to an air-over-ground problem were not attempted. The complexity

of this equation formulated for this problem had been demonstrated.

Neither numerical nor analytical integration could efficiently form an

accurately defined global matrix representation.

The next logical step in attempting to generate a solution to the

EPFBE was to use a less complex numerical method. The numerical method

selected was collocation as described in the next chapter.
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III. Collocation Method

Criteria

The results obtained from the previous chapter identified two criteria

that must be met to successfully generate a global matrix representation

of the EPFBE for an air-over-ground problem. The first criterion is to

use a numerical method that allows the efficient computation of this

matrix. The Galerkin method failed this criterion by requiring the use

of a weight function that significantly added to the complexity. Addi-

tionally this method generated the nested integrals that contributed

to the problems in attempting both analytical and numerical integration.

The second criterion is to use a trial solution that is simply defined

and analytically integrable. The bilinear Lagrange polynomials were

simple in form; however, they expanded the number of distinct terms in

the Galerkin weak form equation beyond the memory requirements available

in MACSYMA. The ellipsoidal angular synthesis function had only one

term but proved not analytically integrable. Also the complexity of

this synthesis function prohibited the efficient use of numerical

integration, since high order quadrature sets were needed for accurate

evaluation.

The main purposes of this chapter are to present a numerical method

that satisfies the first criterion, to develop a trial solution that

meets the requirements of the second criterion, and to identify the

problems that result from applying this combination to an air-over-ground

problem.

The numerical technique chosen is the collocation method. This

method was selected after reviewing the work of Houstis, Lynch, Rice,

and Papatheodorou (Ref. 35). These authors generated solutions to seven-

teen different elliptic partial differential equations using the numerical
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methods of finite differences, collocation, least squares, and Galerkin.

The purpose of this paper was to compare the efficiency and accuracy of

these numerical methods. This research indicated that the collocation

method offered an efficient and accurate alternative to the other three

techniques. Additionally, this work demonstrated the ability of the col-

location method to produce a more simplified formulation than the Galerkin

method. The successes reported in this paper motivated the idea of

developing a numerical method based on collocation for solving the EPFBE.

To insure that this attempt did not violate the second criterion, a

special trial solution, derived using the concept of space-angle-synthesis,

was used.

This combination of trial solution and numerical method allowed the

successful approximation of the EPFBE. The simplicity of the trial

solution allowed all integrals in this formulation to be analytically

evaluated on MACSYMA. Attempts at solving the air-over-ground problem

demonstrated a numerical problem associated with the definition of the

odd-parity fluence. The severity of this problem eliminated the use

of the collocation method for solving the EPFBE when a standard finite

element or combination finite element synthesis trial solution was used.

Collocation Method and Trial Solution

Collocation is classified as a weighted residual method. In the

previous chapter a derivation was presented to illustrate the weighted

residual method. From this derivation the following equation resulted.

L cu 0 (3.1)

The difference between the collocation method and Galerkin method is in

the definition of the weight function,EC-J). As previously demonstrated

this weight function is defined in the following manner for the Galerkin

method.
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Ni (3.2)

For the collocation method the weight-function is defined as

E ( X -XO(3.3)

where Xci-tj is the Dirac delta function. Substituting Eq. (3.3) into

Eq. (3.1) gives

Since the Dirac delta function is defined as

. 'o (3.5)

Eq. (3.4) becomes

To solve for the az coefficients, Eq. (3.6) must be specified at M

points in the domain D. Thus, Eq. (3.6) can be written as

Z a~LQ~j= ~(3.7)

Eq. (3.7) is a general expression representing the collocation method.

For the EPFBE, using the trial solution presented in Eq. (2.16), this

expression becomes
M( k A. A 4 0 S A(A.)- (3.8)

Z z iiA (jSM(,.I0- i
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The coefficients c... are determined by solving a system of simultaneous

equations resulting from the evaluation of Eq. (3.8) at NXM phase space

points.

Comparing Eq. (3.8) to Eq. (2.18) demonstrates the simplication

resulting from the collocation method. Most significant is the absence

of the weight function and outer integrals that caused complications in

the Galerkin weak form equation. Eliminating these two complicating

factors allows the first criterion specified earlier to be met.

The collocation method does introduce some new complexities. The

most obvious is that the vacuum boundary condition is no longer treated

naturally. This condition must now be enforced by using

) , o '0(3.9)

as presented in Chapter I. Unlike the Galerkin method, the collocation

method does not generate a symmetric global matrix. This lack of sym-

metry and positive definiteness increases the cost of solving the result-

ing matrix and eliminates the use of some very efficient and fast linear

equation solving algorithms. Another complication results from the

required continuity of the trial solution. In the Galerkin weak form

equation, the functions chosen for use in the trial solution were required

to be continuous. The variational nature of this equation eliminated

continuity constraints on the deivatives of these functions and thus

allowed the use of piecewise continuous Lagrange polynominals. The

collocation method requires the trial solution to have continuous second

derivatives at the mesh nodes. The simplification gained by using the

collocation method forces higher continuity requirements on the trial

solution.

42



A trial solution requiring continuity in the second derivative may

be constructed from cubic splines. A derivation of the cubic spline

function in one dimension is presented. in Appendix I and is denoted as

A tensor product consisting of cubic splines representing both

the spatial and angular variation of the neutron fluence would result

in a global matrix of large bandwidth. In an air-over-ground problem

both the spatial and angular domain demand relatively fine zoning. This

zoning requirement increases the bandwidth problem in the global m~trix

and increases the computational cost. To reduce the bandwidth a synthesis

function was used instead of cubic splines to represent the angular varia-

tion of the neutron fluence.

An angular synthesis function was devised to represent the angular

variation of the even-parity fluence and meet the second criterion

described previously. This function can be represented as

a cz) -05 (X. X) (3.10)

where uD and xD are the coordinates of the streaming direction with

respect to the point source in the particle direction coordinate system.

This synthesis function was devised by considering the expected angular

variation of the neutron fluence. Appendix G describes this synthesis

function.

Eq. (3.10) has properties similar to the ellipsoidal synthesis func-

tion used in Chapter II. Eq. (3.10) is pitched in line with the streaming

direction at a particular spatial location. This equation can also be

varied to represent the three expected angular fluence shapes presented

in Fig. 6. A highly anisotropic flux distribution occurs when the

coefficient az is much larger than the cc, coefficient. An isotropic

flux distribution occurs when x = O.
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The primary difference between the synthesis function defined in

Eq. (3.9) and the ellipsoidal synthesis function presented in Chapter

II is the meaning of the coefficients.. The coefficients in the ellipsoidal

synthesis function expansion allowed the blending of three ellipsoidal

shapes to determine the angular approximation. In Eq. (3.10) the coeffi-

cients directly shape the synthesis function for approximating the angular

variation of the even-parity fluence.

The use of a synthesis function to represent the angular dependence

of the even-parity fluence reduces the bandwidth of the resulting global

matrix. This reduction occurs since the synthesis function is globally

defined over the entire angular domain, thus eliminating the need for

zoning. One globally defined function replaces all the tensor product

combinations that would result from an angular trial solution defined

over a discretized domain. Since each tensor product combination occupies

one element in the global matrix, the globally defined synthesis function

can significantly reduce the bandwidth of this matrix. An additional

advantage to using the synthesis function defined in Eq. (3.10) is that

it satisfies the reflective boundary condition. The final form of the

trial solution used with the collocation method is
M N.

6'(e)6-£ acif.a1  /Apo* (3.11)

where (ej and (a) are cubic splines in the spatial domain.

The combination of the collocation method and the trial solution

presented in Eq. (3.11) satisfied the two criteria determined from Chapter

II. A computer program was written that used this combination to generate

a global matrix representation of the EPFBE. This program used no numer-

ical integration, since the simplicity of the trial solution and the col-

location method allowed all integral and derivative operations to be
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performed on MACSYMA. The results of these operations were translated

into FORTRAN statements by MACSYMA, thus eliminating the possibility of

erroneously transcribing these expressions.

A distributed first-scatter source term was used in this computer

code. The angular distribution of the neutron fluence near the point

source is extremely anisotropic. This anisotropy is so severe that the

angular synthesis function represented by Eq. (3.10) would have difficulty

in accurately approximating such an anisotropic shape. The use of the

first-scatter source allows the scattered and unscattered neutrons at a

point to be treated separately. Eq. (1.6) gives at P the angular dis-

tribution of first-scattered neutrons which were emitted from a point

source located at F . The uncollided neutrons arriving at F are given

by

4 7(3.12)

while those that interact either through absorption or scatter are

represented by

oC a (P) (3.13)

The scattered fluence is less anisotropic then the total fluence and may

be represented by a function with a simple angular dependence. In the

final solution the uncollided fluence is added to the calculated value

of the neutron fluence in the streaming direction.

As previously mentioned, the collocation method requires an evalua-

tion of Eq. (3.8) at a number of phase space points equal to the number

of coefficients in the trial solution. The trial solution presented in

Eq. (3.11) requires Eq. (3.8) to be evaluated in two distinct ingular

45



directions at each spatial location. In the collocation based computer

code, these angular directions were always selected as the streaming

direction and a direction perpendiculay' to the streaming direction. The

choice of these two directions allowed the coefficients to be defined

in the most meaningful manner based on their role in properly shaping the

angular synthesis function. The spatial collocation points were chosen

as the nodes of the mesh. The only exception occurred along the mesh

lineeo. On this mesh line the reflected boundary condition must be

enforced. Since the chosen trial solution automatically satisfied this

constraint, spatial collocation points were chosen at a value ofe slightly

greater than zero. Along the vacuum boundaries the code provided the

option of either evaluating Eq. (3.9) at two angular directions or enforc-

ing the EPFBE in one angular direction and the vacuum boundary condition

in the other direction. A flow diagram of the collocation computer code

appears in Appendix H.

The structure of the global matrix resulting from the use of the

selected trial solution and the collocation method was primarily determined

by the cubic splines. The structure of this matrix for the spatial mesh

in Fig. 7 is illustrated in Fig. 8.

Problems

An air-over-ground problem was attempted using the collocation

method. The spatial mesh used for this problem was identical to the one

illustrated in Fig. 7. Collocation points were selected as previously

described and the vacuum boundary condition was enforced along the appro-

priate boundary surfaces. To generate a solution to this problem the

collocation global matrix assembly program was expanded. This expansion

was necessary to determine the coefficients of the trial solution,
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analyze the resulting global matrix, and reconstruct in terms of the trial

solution the even-parity, Boltzmann, and scalar fluences. Solution

coefficients were determined using Gaussian elimination with full pivoting.

The input to this linear equation solving routine was the collocation

global matrix and source column vector computed from the global matrix

assembly program. The global matrix was analyzed by determining its con-

dition number which was calculated as the ratio of the largest to the

smallest eigenvalue. (The eigenvalues were determined by the International

Mathematical and Statistical Libraries routine entitled LSVDF.) Recon-

struction of the desired fluences was accomplished from the solution

coefficients and basis functions of the trial solution for the spatial

location chosen. The reconstruction program used many of the same sub-

routines that were developed for the global matrix assembly program. The

logic of this system of programs is illustrated in Fig. 9. Each subrou-

tine contained within the global matrix assembly program and fluence

reconstruction program was independently checked to assure that its logic,

programming, and interface with the driver routines was correct.

The solution generated by the collocation method to this air-over-

ground problem was disappointing. Most significant was that the scalar

fluence was negative at several node locations in the spatial mesh.

Also both the Boltzmann and even-parity fluence exhibited negative values

for several angular locations at each spatial node point. Negative angular

fluences values were not limited to spatial node points, but also appeared

at off node spatial locations throughout the spatial domain. Those scalar

fluence values that were positive did not make physical sense. The value

of the scalar fluence was often larger on the boundaries then near the

interior of the spatial mesh. Also the condition number of the resulting

global matrix was 10.
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Several means were attempted to improve these poor results. The

meshing of the spatial .domain was refined. This refinement increased

the number of nodes from sixteen to thirty-six, thus increasing the size

of the global matrix to a 72 x 72 system. This refinement produced no

change in the previously observed behavior of the fluences and increased

the condition number to 108.

The method of selecting collocation points was altered. Spatial col-

location points were selected at locations other than at the spatial nodes

and angular collocation points were selected away from the streaming

direction. Again the behavior of the fluence remained the same and the

conditon number did not change appreciably from the original value of l05 .

In addition a new difficulty was encountered. This difficulty involved

selecting spatial collocation points that were not located on either the

vertical or horizontal mesh lines. Distributing these points evenly

around the spatial mesh proved impossible and forced a random type of

selection. The optimum way of picking these points from the unlimited

number of combinations available was not clear. This random selection

process was abandoned, since the resulting solution exhibited the same

problems originally encountered.

Another attempt at resolving these solution problems used the option

mentioned earlier of collocating either the EPFBE or vacuum boundary

condition on the appropriate boundary surface. Two different approaches

were tried. The first approach allowed the vacuum boundary condition to

be used for both angular collocation points at a boundary spatial node.

The second approach divided the two angular collocation evaluations

between the EPFBE and vacuum boundary condition. In both cases the

behavior of the scalar fluence and value of the condition number remained
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effectively the same as the original result. At this point it was becom-

ing increasingly clear that a fundamental problem existed with the colloca-

tion method. To uncover this problem a simple diagnostic problem-was

used.

This diagnostic problem assumed a uniform isotropic neutron source,

isotropic scatter, and isotropic boundary conditions. Its solution, as

verified by a DOT 3.5 calculation, is a flat spatial distribution isotro-

pically distributed in angle. The simplicity of this problem allowed

several different formulations of the EPFBE to be evaluated. These various

formulations differed in complexity and all had the capacity of generating

an accurate solution to this problem.

The simplest formulation was derived by using the isotropy of the

known solution. This isotropy allowed all terms in the EPFBE related to

the odd-parity fluence to be eliminated. The resulting formulation was

,, (3.14)

The collocation global matrix assembly program was modified to solve Eq.

(3.14). This modification included replacing the first-scatter source

term and vacuum boundary condition with those associated with the diagnos-

tic problem. The source term and boundary condition for the diagnostic

problem were respectively defined as

Sc ,AJ 1 n(r (3.15)

4 : for F" on the boundary, (3.16)

The collocation method generated the correct solution to the diagnostic

problem using this formulation of the EPFBE. This result was encouraging,
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since it confirmed the logic and programing accuracy of the subrountines

in the global matrix assembly program and reconstruction program.

A more complicated formulation was attempted next. This formulation

was

# G, t S, (3.17)

where and the boundary conditions were the same as the previous

problem. For this formulation the collocation method did not generate a

flat scalar fluence distribution. The boundary scalar fluences welle cor-

rect, but the interior mesh values varied by as much as 20 percent. For

this formulation all the scalar fluences were positive. The same formula-

tion was solved again using a more refined spatial mesh. The solution

was the same, indicating the original mesh was adequate.

The formulation presented in Eq. (3.14) was next used with the fol-

lowing form of the diagnostic problem boundary condition

X > (3.18)

Eq. (3.18) represents a statement of the diagnostic problem boundary

condition in terms of the Boltzmann fluence. The collocation method must

be able to handle this type of boundary condition formulation, since in

all transport problems the physical constraints on the boundaries are

specified in terms of this fluence. In the collocation computer program

Xe.'l was replaced by the odd-parity fluence transformation Eq. (A.20).

The solution generated by the collocation method for this problem was again

incorrect. The interior scalar fluences were correct; however, the

boundary scalar fluences varied by 120 percent.

The final formulation used Eq. (3.17) with the boundary condition pre-

sented in Eq. (3.18). The collocation method generated a solution for
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this formulation that was utter nonsense. This solution had several nega-

tive fluence values both in the interior of the mesh and on the boundary.

The scalar fluences that were positive were not equal and could not have

generated a flat spatial distribution.

Problem Analysis

The poor results generated by the collocation method can best be

explained by using a l-D plane geometry formulation of the diagnostic

problem. In this simplified formulation a suitable synthesis trial solu-

tion for the standard Boltzmann equation is
_tX, (9Z (A, * (3.19)

where ?Loqis a cubic spline basis function. Using the defintion of the

even-parity fluence with Eq. (3.19) generates the following trial solution

#4 (3.20)

Applying the odd-parity fluence transformation presented in Eq. (A.20) to

the trial solution of Eq. (3.20) results in

a, UW fx (3.21)

for a P0 scatter process. The boundary condition of the diagnostic

problem in terms of 'Px.k.I and Ycx,g) can be written as

+~s, (3.22)

Using Eqs. (3.20) and (3.21), Eq. (3.22) can be rewritten as

(X Z X - or-(A)ccg4 (3.23)
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By the definition of the collocation method Eq. (3.23) can be satisfied

for one selected angular collocation point at a particular spatial node.

Eq. (3.23) can not be properly constrained to generate the isotropic

boundary condition. In any other angular direction other than the selected

collocation direction the value of the boundary condition is not 4-7

The odd-parity fluence transformation has forced the Boltzmann fluence to

have an anisotropic component. This can be easily seen by the presence of

the/A variable in Eq. (3.23). Ideally for the diagnostic boundary ;ondition

the following relation should hold:

Q- V .x, 6( g)) 0 (3.24)

however; this would require either

(1) all the cLi-'sto be zero in which case o,ju 0 at all phase

space points.

(2) ( Ix , which is only true for the spline centered at

a node and since splines overlap in mesh intervals this is not

in general true ( Xs boundary node location).

which is not enforced in the collocation set of equations.

The conclusion is that the selected synthesis trial solution is not

transformable through the odd-parity fluence transformatio.i into a trial

solution that accurately represents the anisotropy of the fluence.

The odd-parity fluence transformation is also present in the even-

parity equation. As demonstrated in Appendix A the odd-parity fluence is

contained in the first term of this equation. If the even-parity equation

is being derived for the diagnostic problem, this first term would appear

as
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(3.25)

To eliminate the X variable from the even-parity equation the odd-parity

fluence transformation is used. This is accomplished by substituting the

value of X¢,x,4) from Eq. (3.24) into Eq. (3.25), thus generating
C1L (_ -_4 _ ,4 t

_ ( F (3.26)

Simplifying Eq. (3.26) gives

- K) x 1(3.27)

The full even-parity equation for the 1-D plane geometry diagnostic prob-

lem is

..... XAO(x)- ) d.2' MX- 7- (3.28)

Substituting the trial solution of Eq. (3.20) into Eq. (3.28) yields
27 -Az ( 2 0. ( - -' (3.29)

Obviously to generate a flat isotropic Boltzmann fluence, the first term

of Eq. (3.28) must be zero, since its origin is the difference between
- 0 1116. ,l

the leakage in the/. and-&& angular directions. If O-d(I o could

be made equal to zero then Eq. (3.29) would be

14

Ql F t~K q1rs- -Lin-. v (3.31)

which generates the correct solution to the diagnostic problem. In the

collocation method there is no means to set this term equal to zero.
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Just as in the boundary condition, the odd-parity fluence transformation

has forced an incorrect anisotropy into the solution.

To determine tne form of the anisotropy resulting from the odd-parity

fluence transformation, an analysis was performed. This analysis was

based on an interpolation procedure similar to the one used to apply the

Boltzmann fluence boundary condition to the even-parity equation. In

this procedure three different trial solutions were used to represent

the even-parity fluence. These trial solutions were selected because

they illustrated specific problems related to the odd-parity fluence trans-

formation. For each trial solution a simple spatial mesh was constructed

and where necessary an angular mesh. All results were generated using

the same sequence of programs that were used in solving the four versions

of the diagnostic problem. Modifications to these programs were made to

account for the different interpolating functions. All angular plots

presented are typical of those seen at all the nodes in the spatial mesh.

The first problem used the trial solution presented in Eq. (3.19) and

solved the interpolation problem of Eq. (3.22) with the 1/471 replaced by

100. Fig. 10 illustrates the results of this problem for various values

of the total macroscopic cross section ( ,w). This interpolation problem

demonstrates graphically the explanation that was presented using Eqs.

(3.19) thru (3.31). The spatial mesh for this problem had nodes at 0,

10, 15, and 20 cm. The angular collocation point at each of these spatial

nodes was taken at u = 1 which corresponds to the streaming direction in

a l-D plane geometry problem.

In Fig. 10 a' was varied from infinity to 10-4  /cm thus varying

the effect of the odd-parity fluence transformation. For r- o an

isotropic fluence distribution across the angular domain was generated.
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This result was analogous to the first version of the diagnostic problem

that generated acceptable results. As illustrated by the other curves in

Fig. 10, reducing the value of Or increases the weight of the odd-parity

fluence transformation in determining the angular distribution of the

Boltzmann fluence. The effect of this transformation is most clearly

demonstrated by the odd functional nature of the resulting Boltzmann

angular fluence distribution for 0 - I0 /cm.

For the trial solution presented in Eq. (3.20), the resulting aniso-

tropy is fixed. The collocation method can alter the magnitude of the

anisotropy, but can not change its relative angular distribution. Thus

the anisotropy demonstrated in Fig. 10 will exist at all spatial locations.

This is obviously unsatisfactory since the anisotropy in most transport

problems (especially in an air-over-ground problem) varies from one

spatial location to another.

In the second interpolation problem a pure spline basis is used as

a trial solution for the even-parity fluence. This trial solution can

be represented mathematically as

C, j~ (3.32)

where (9(, and P.l are cubic splines defined respectively over the

spatial and angular domain. From this trial solution the Boltzmann flu-

ence is formed for a 1-D plane geometry and appears as

Eq. (3.33) was interpolated across a spatial mesh with three nodes located

at 1., 10., and 20. cm and an angular mesh with three nodes located at

-1, 0, and 1. The spatial and angular nodes also served as collocation
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ini

coordinates, where the Boltzmann angular fluence (Eq. (3.33)) was forced

to equal 100. Again with - set equal to infinity a flat isotropic

angular distribution was generated across the spatial domain. In Fig.

11 and Fig. 12 the value of a. is continuously decreased. The curves in

these figures demonstrate the same trend seen previously with the 1-D

synthesis trial solution. As o-T decreases in value the dominance of

the odd-parity fluence transformation increases.

Unlike the synthesis trial solution the pure spline trial solution
--

can alter the anisotropy. This alteration can be achieved by more finely

discretizing the angular domain and thus forcing the solution to be con-

strained at more angular nodes. This approach generates two disadvantages.

First, the behavior of the trial solution in Eq. (3.33) would still be

dominated by the odd-parity fluence transformation between the nodes for

small values of O"T . This dominance forces an artifical anisotropy

between the nodes that in an exact solution would not exist. This arti-

fical anisotropy would affect the evaluation of the boundary condition

and first term of the even-parity equation in a manner similar to that

observed in the diagnostic problem. The degree to which this effect

would alter the final solution is directly related to the number of nodes

used in the angular domain. Increasing the number of nodes leads to

the second disadvantage. This disadvantage addresses the size of the

resulting global matrix that would be generated using a pure spline

basis. The total number of coefficients that must be solved for to obtain

a solution to the EPFBE is equal to the number of unknown coefficients in

the trial solution. The trial solution presented in Eq. (3.33) would

result in a global matrix that has a row and column dimension equal to

NXM. Increasing the number of nodes by & in the angular domain results
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in an increase in the dimensionality of the global matrix of M For

an air-over-ground problem a suitable pure spline trial solution for the

even-parity fluence is

Ckl j J K
#  

(e 4 X)( .4

Refining the angular mesh a factor of a in the/A andX coordinates would

result in a NM(&(O +) P ) increase in the dimensionality of the glob-

al matrix. The acceptable value ofa needed to offset the artific~l

anisotropy effect of the odd-parity fluence transformation is not known,

but based on the results of the diagnostic problem and presented figures

would appear to be quite large. A large L would result in a large

global matrix. This matrix would be nonsymmetric and costly to compute

and solve, thus eliminating the pure spline basis as an efficient means

to solve the even-parity equation, especially for an air-over-ground

problem.

The third trial solution used to demonstrate the anisotropy effect

of the odd-parity fluence transformation was the one presented in Eq. (3.11).

For this trial solution an interpolation problem was not formulated. A

more simple and direct means of demonstrating the effect of the odd-parity

fluence transformation was found. A two-dimensional spatial mesh in

the coordinates e and . was constructed. The nodes in both the eand

Z direction were located at 1., 10., and 20. cm. At the coordinate loca-

tion (10., 10.) the Boltzmann angular fluence distribution was calculated.

This calculation was performed by the fluence reconstruction program.

Input to this program included the spatial mesh, solution coefficients,

o-T(c) , and the location of the point source that determines the pitch

of the trial solution at the various spatial locations. All solution
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coefficients were set equal to one. The point source was located at the

spatial coordinates (0., 10.), thus making the pitch axis of the trial

solution parallel with the e axis.

Figs. 13 and 14 illustrate the results of the fluence reconstruction

program. Figs. 13a and 13b demonstrate the angular distribution of the

even-parity fluence for x = 0 and 77 respectively. Figs. 13c and 13d

show the form of the odd-parity fluence derived from the trial solution

of Eq. (3.11) for various x locations. Figs. 14a thru 14d are plots of

the Boltzmann fluence for various x locations and values of O-r. The

significant thing to note from these plots is the anisotropy that is

forced on the Boltzmann fluence by the odd-parity fluence transformation.

A polar plot of Figs. 14a and 14b is presented in Fig. 15. This polar

plot represents the angular synthesis function for the Boltzmann fluence

as derived from the even-parity fluence angular synthesis function and

odd-parity fluence transformation. This function is not representative

of the angular distribution expected from either the diagnostic problem

or an air-over-ground problem. This poor representation is caused by

the inadequacy of the selected even-parity angular synthesis function to

be transformed into an accurate representation of the anisotropic com-

ponent of the Boltzmann fluence. As evidenced by Figs. 14c and 14d the

derived angular synthesis function becomes worse as the dominance of

the odd-parity transformation increases. The negative values seen in

Fig. 14c could have contributed to the negative fluence values calculated

in the diagnostic and air-over-ground problem.

The conclusion of this chapter is that the collocation method is

not suitable for solving the EPFBE. The main failure of this technique

lies in its point-wise definition. This definition forces the selected
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trial solution to accurately represent the even-parity fluence and be

transformable into an accurate representation of the odd-parity fluence.

As seen in this chapter the standard finite element trial solution (pure

spline basis) and combination finite element synthesis function trial

solution do not meet this criterion. The Galerkin method reduces these

stringent requirements on the trial solution by allowing the even-parity

equation to hold in an integral sense rather than a point-wise sense.

The integration operations associated with the Galerkin weak form equa-

tion act as a smoothing apparatus and shapes the trial solution tolneet

the phase space volume requirements imposed by the weak form equation.

Ironically the very thing that caused the Galerkin method to fail, the

nested integrals, is also the reason a finite element method can success-

fully generate solutions to the EPFBE.
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IV. Multigroup Considerations

Background

The energy dependence of neutral particle fluences must be considered

in an air-over-ground problem. The multigroup method (Ref. 1) is used to

approximate this dependence. In multigroup theory the definition of

various cross sections are modified and new cross sections are defined.

Multigroup cross sections have been previously presented in relation to

Eq. (1.3) for the regular Boltzmann equation. Similar definitions result

from the EPFBE when formulated in a multigroup structure. The EPFBE

written for group h is

(4.1)

where

... A) = the even-parity fluence for group h

Kh and Gh are equivalent to the Ku and Gg operators written for group h

and are defined as

fA A)~a G 1o-, (,A0eVc/ (4.2)

'~'h (4.3)

where

or.(FJ= macroscopic total cross section for group h

in group even-parity differential scattering cross section

a P.

( (F') =JIth order Legendre coefficient for group h)

( . tj =Lth order Legendre polynomial)

69



S T( , . and Sr(,A) are equivalent to the even and odd-parity

source terms written for group h. These terms differ from the monoenergetic

forms of these source terms in that the down-scatter from higher energy

groups must be included as dictated by particle conservation. The even

and odd-parity multigroup source terms can be defined respectively as

A) + r e ,''(4.4)

=, (4.5)

where

'SeeA.) = group h even-parity source term

S0(PAJ = group h odd-parity source term
0 3h&,AA% = even-parity down scatter cross section from group g to

group h

bAt 'X = odd-parity down-scatter cross section from group g to

group h

CT' = even-parity fluence in group g

Yc'X  ] = odd-parity fluence in group g

Multigroup Analysis

A multigroup solution of Eq. (4.1) was accomplished by Kaper, Leaf,

and Lindeman (Ref. 27) using the variational formulation of this equation.

These authors assumed that the scattering was isotropic. In an air-over-

ground problem this assumption cannot be made, since scattering in air

is extremely anisotropic. When the scattering must be modeled as aniso-

tropic, the left hand side of the weak form of the EPFBE becomes extremely

complex as evidenced in Chapter II. When the multigroup method is applied
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to either the EPFBE or its weak form the source terms increase substan-

tially in complexity. The multigroup method does not significantly affect

the left-hand side of either formulation.

To illustrate this increased complexity a comparison is made between

using an isotropic and anisotropic scattering representation in the source

terms of the multigroup EPFBE. For an isotropic scattering process Eqs.

(4.4) and (4.5) can be rewritten as
:~ f T9} , (4.6)

r, A ~~ (4.7)

The integral term ;n Eq. (4.5) is only defined for odd Legendre coefficients

and thus for an isotropic scattering process equals zero. Eq. (4.6) is analo-

gous to Eqs. (2.28) and (2.29) in terms of simplicity and once again allows

the integral in Eq. (4.6) to be evaluated once to any desired accuracy

and stored for future use. The simplifying assumption of isotropic scat-

ter played an essential role in the successful results generated by the

previously mentioned authors.

Anisotropic scattering forces the use of the odd-parity fluence term

in a multigroup formulation. This term appears in the odd-parity source

term as illustrated in Eq. (4.5). Substituting the definition of the odd-

parity fluence into Eq. (4.5) yields
r- ) ,'ZA(4.8)

~TCS& ' 0 pAAj + Cj 0  -A-J4p 921

The complexity of Eq. (4.8) can best be illustrated by assuming a multi-

group problem with n. groups. For the first group the odd-parity source

term can be written as
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Is. F,(4.9)

The second group odd-parity source term must include a down-scatter term

to account for the neutral particles that scattered from group 1 to

group 2.

, ,T 2 (4.10)

but as previously described

SA % (4.11)

and thus Eq. (4.l0) can be written as

(, I C-a( :A)(r J(.) A.

The complexity of the multigroup method becomes evident in formulating

the odd-parity source term for group 3. This source term can be written

as

( g)- , ,7 tI (:s'a ,A',t ) ,t" . + ,,ga A j :R (4.13)

Expanding the second term in the integral results in

(4.14)
f 2 KZ T

Substituting Eq. (4.12) into the first term of Eq. (4.14) generates

If all the terms resulting from the Ku operator were written out in full

form, one term in Eq. (4.15) would appear as
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o i~I  (, ,( ̂  =,,^ ) ¢;^ €, ) , d i;,d,{J,€(4.16)

" tl f)4 MCIn 4,d'I

In a similar manner the term in Eq. (4.15) containing -~ ~'galso

becomes embedded in a set of nested integrals. When the Kh operator is

fully expanded one term of this expansion would appear as

CrC
dV"'ot, dA.

The nesting problem for both Eqs. (4.16) and (4.17) becomes worse when

the number of energy groups increases. The problems involved with eval-

uating the integrals in Eq. (4.17) are similar to those mentioned in

Chapter II for both a pure spline and spline synthesis trial solution.

The complexiLy illustrated in Eqs. (4.16) and (4.17) increases when

the odd-parity source is placed in the Galerkin or collocation formulations.

For the Galerkin formulation the odd-parity source term appears in the

following term

j if<z V C C" (4.18)< X v c;RJK ,, > do(

In the collocation method it appears as

/L- V o SrnA (4.19)

The complexity of doing multigroup calculations using the EPFBE does

not exist for the first-order Boltzmann equation. The essential difference

is that the first-order Boltzmann 'luence is not defined in terms of a

source. The odd-parity fluence is aependent on the odd-parity source term

due to the requirement of defining this fluence in terms of the even-

parity fluence during the derivation of the EPFBE. The complexity intro-

duced by applying the multigroup method to the EPFBE is analogous to the

complexity that evolved in the Galerkin method.
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This chapter has demonstrated the problems involved with using the

EPFBE in a multigroup.scheme. These problems must be solved before this

equation can be used to generate accurate and cost effective solutions

to an air-over-ground problem.
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V. Summary, Conclusions and Recommendations

Summary and Conclusios

The purpose of this research was-to determine the feasibility of

using the even-parity equation to calculate the neutral particle fluence

distribution for an air-over-ground problem. In pursuing this research

several different approaches were attempted. Each of these approaches

involved an application of a standard finite element technique to an

appropriate form of the EPFBE. The only deviation from this standard

approach involved the use of the synthesis method. This deviation can

not be considered radical since numerous authors reported its successful

use in solving transport problems. The choice of the EPFBE was motivated

by its mathematical properties that potentially eliminated ray effects.

Combining the finite element and synthesis method to solve the EPFBE

appeared to be reasonable.

Two basic problems related to the EPFBE evolved. The first problem

involved the complexity that occurred when the weak form of the EPFBE was

applied to the air-over-ground problem. The two-dimensional cylindrical

geometry required by this problem coupled with the need for a P3 scatter-

ing representation contributed heavily to this complexity. Another

contributor was the finite element method. The discretized angular and

spatial domain used with this method and the linear Lagrange polynomial

trial solution defined over these domains eliminated the use of analytical

methods for evaluating the weak form equation integrals. Numerical inte-

gration of this trial solution over the same domains was extremely

inefficient and would have required a high order quadrature set to

generate acceptable results. The cost of numerically evaluating the weak
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form integrals to the necessary accuracy proved prohibitive for a full

scale air-over-ground-problem.

This integral problem originated from the choice of the Galerkin

method. Angular integrals were already present in the EPFBE because of

the Ku and Gg operators. The definition of the Galerkin method added

additional angular and spatial integrals that resulted in the nesting of

up to six integrals in some terms of the weak form equation. Other finite

element methods such as least squares would have generated the same

nesting problems and complex integrands as the Galerkin method.

The synthesis method was not successful with the weak form of the

EPFBE due to the choice of the function representing the angular distribu-

tion. This synthesis function was not analytically integrable and was

complex enough to require the use of higher order quadrature sets.

Additionally, the form of the function did not allow the pitch parameters

of the ellipsoid, which are spatially dependent, to be separated from

the angularly dependent variables. This fault eliminated the possibility

of separating the angularly and spatially dependent terms in the weak

form equation and forced all integral evaluations to be coupled. Such a

coupling required all integrals to be reevaluated whenever the spatial

mesh was altered.

A conclusion of this research is that the use of a pure linear

Lagrange trial solution coupled with any of the integrally defined finite

element solution techniques does not provide a viable means for solving

the EPFBE formulated for an air-over-ground problem. This conclusion

probably applies to any two-dimensional transport problem requiring

the use of a P3 scattering representation.
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The second basic problem associated with the EPFBE involves the odd-

parity fluence transformation. As demonstrated in Chapter III this trans-

formation forces a certain anisotropyon the solution of a transport

problem and adversely affects the collocation evaluation of any term

in the EPFBE or boundary condition that contains the odd-parity fluence.

The form of this anisotropy is fixed and at best can only be scaled in

magnitude by the solution coefficients determined from the collocation

method. The only possible situation that would allow an acceptablesolu-

tion is when the anisotropy generated from the odd-parity fluence trans-

formation matches the anisotropy of the true solution. Such a situation

is highly improbable and certainly was not the case for the air-over-

ground problem.

Attempting to derive a synthesis trial solution that accurately

represented the anisotropy of a particular problem would be extremely

difficult. Such a synthesis function would need to satisfy the constraints

imposed by the even-parity fluence and be transformable using derivative

and integral operations into a function that accurately approximates the

odd-parity fluence or anisotropy. The central difficulty of this deriva-

tion would be understanding what constitutes a good representation of the

anisotropy for a certain problem. Most transport problems are so complex

that accurately approximating the anisotropy would be virtually impossible.

Additionally, the type of transport problem that the above derivation

would be applicable must have a fixed anisotropy across the spatial domain.

Few realistic problems meet this constraint.

The forced anisotropy originating from the odd-parity fluence

transformation also affects a pure spline trial solution. The effect of
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this anisotropy appears between the nodes and modifies the shape of the

spline functions in the angular domain. At the nodes the collocation

method forces the correct solution. This modification from the original

spline shape is the forced anisotropy induced by the odd-parity fluence

transformation. The only cure for this problem is to space the nodes

closer together in the angular domain. The consequence of this action

is to create a global matrix of high order that is costly to compute

and inefficient to solve. The optimum spacing of the nodes would have

to be determined through experimentation and would vary from one type

of transport problem to another.

It is concluded from this research that the collocation method can

not be effectively applied to the EPFBE. This statement must be qualified.

The synthesis method is totally incompatible with the requirements of

forming the odd-parity fluence through the odd-parity fluence transformation

and thus an efficient solution method based on synthesis and collocation

is not possible. A pure spline trial solution might generate an accept-

able transport solution with the collocation method; however, the amount

of discretization required in the angular domain to offset the forced

anisotropy would prohibit the classification of this approach as efficient.

The multigroup problems described in Chapter IV are common to any

solution technique proposed for use with the EPFBE. The structure this

method imposes compounds the complexity already inherent in the EPFBE.

This complexity increases with the number of energy groups and would

restrict the use of the many grouped cross section sets commonly used

in an air-over-ground problem. Accurate transport solutions are not

possible without using these cross sections. A conclusion of this
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research is that the standard multigroup method can not be used with the

EPFBE formulated for an air-over-ground problem.

Three significant points concerning the EPFBE have resulted from

this research. Miller, Lewis, and Rossow (Refs. 25 and 26) presented

a solution technique that successfully eliminated the ray effect. The

finite element method applied to the even-parity functiorh.l appeared to

have potential for other types of transport problems that are affected

by this numerical problem. This research has definitively demonstrated

that the work of the above authors can not be extended to an air-over-

ground problem and is probably limited to the simple geometries and scat-

tering models used in their published work.

This research has also provided the basic criteria for attempting

future work with the EPFBE. The solution technique used to solve this

equation must be integrally defined and contain the vacuum boundary

condition as a natural condition. The trial solution selected for use

with the EPFBE must be globally defined, thus eliminating the inefficient

numerical integration problems encountered in Chapter II. If the trial

solution contains an angular synthesis function it must be simple in form

and allow those parameters related to the pitch of the streaming direc-

tion to be separated from other angular variables.

The third point addresses the problem of reconstructing the Boltzmann

fluence from a numerical solution of the EPFBE. As demonstrated in Chapter

III, the odd-parity fluence transformation does not accurately represent

the anisotropic portion of the Boltzmann fluence. The central problem

with this transformation is its dependence on the spatial and angular

derivatives of the selected trial solution. Typical finite element trial
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solutions are selected primarily on the requirement of mathematical con-

tinuity. Synthesis trial solutions are selected because they accurately

approximate some functional variation of interest. For the even-parity

equation neither of these types of trial solutions are satisfactory

because their angular and spatial derivatives do not accurately approxi-

mate the anisotrop-ic portion of the Boltzmann fluence. Additionally,

the specification of the EPFBE does nothing to constrain these deriva-

tives for accurately approximating the odd-parity fluence. It is a con-

clusion of this research that the anisotropic component of the Boltzmann

fluence can not be accurately calculated using standard finite element

and synthesis techniques. The impact of this conclusion is that the

Boltzmann fluence can not be accurately derived from a solution of the

EPFBE resulting from the use of these numerical methods. Successful

work using this equation was always reported in terms of the scalar

fluence. The angular fluence results were never presented.

Recommendations

Three facets of future work are proposed for calculating scalar

fluences with the monoenergetic form of the EPFBE. First, a parametric

study should be performed to determine the effect of reducing the order

of the Legendre expansion representing the differential scattering cross

section. If a P1 representation could produce acceptable results, the

decrease in complexity would allow the analytical formulation of the

weak form of the EPFBE using a pure linear Lagrange trial solution.

Second, the angular synthesis function presented in Chapter III for

use with the collocation method should be attempted with the weak form

of the EPFBE. The successful analytical formulation of the EPFBE using

the collocation method grants much credence to this proposal. Additionally
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this angular synthesis function allows the pitch parameter to be separated

from the other angular variables. This property would permit a total

separation of the spatially and angularly dependent terms and thus the

individual integral evaluation of each. Since this angular synthesis

function is globally defined all analytical evaluations could be accom-

plished using definite integrals. These definite integrals would not

create the large number of terms in MACSYMA experienced in the indefinite

integration process used in Chapter II. This proposal is not without

risk. The trigonometric functions in the angular synthesis function

must be multiplied by similar functions as specified by the Galerkin

method. These products of trigonometric functions are analytically

evaluated using reduction formulas that can generate several terms.

This increased number of terms coupled with the extra integration over

the angular domain required by the Galerkin method could cause problems

with MACSYMA's limited memory. If memory problems evolve, a combination

of analytical and numerical integration could prove feasible.

The third proposal involves a modified form of the synthesis trial

solution presented in Chapter III. This trial solution can be modified

for use with the first-order Boltzmann equation. Adding an odd function

to this trial solution would result in
M

e~) 6. (aIJaL, ~ 4a + (5.1

: A J 42 CO0 S X o Xo- ) (5.2)
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and all other terms have been previously defined. This odd term allows

the anisotropy of the first-order Boltzmann fluence to be defined and

specifically controlled by the Q 2j coefficient. This control was not

available in the EPFBE.

The trial solution in Eq. (5.1) could be used with several formula-

tions of the first-order Boltzmann equation. The collocation method

could be directly applied to this equation, since no odd-parity fluence

transformation exists. The one possible drawback to applying this method

involves the hyperbolic nature of the first-order Boltzmann equation.

Articles do not appear in the literature that successfully demonstrate the

application of the collocation method to a hyperbolic equation. The

work by Houstis, Lynch, Rice, and Papatheodorou (Ref. 35) considered

only elliptic equations. A research project attempting this application

should initially study the effects of collocating hyperbolic equations.

Another numerical method that would be compatible with the trial

solution in Eq. (5.1) and first-order Boltzmann equation is the weighted

residual technique used by Roberds and Bridgman. Their trial solution

had the same number of unknowns per spatial point as the one in Eq. (5.1),

but only provided a P1 type of angular approximation. The 14 term in

Eq. (5.1) offers a P2 type of approximation for the same number of

unknowns. Roberds and Bridgman used the method of finite differences

to evaluate the spatial varition of the fluence. The splines in Lq.

(5.1) would serve the same purpose and could be analytically evaluated

using MACSYMA.
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APPENDIX A

DERIVATION OF EVEN-PARITY FORM OF THE

BOLTZMANN NEUTRON TRANSPORT EQUATION

The monoenergetic steady-state Boltzmann neutron transport equation

can be written as

A.I if c ~ IiAjL~ CA (A.1)

Since this equation holds for A it must also hold for-A

If Eqs. (A.1) and (A.2) are added together the following results:

": (A.3)

Substracting Eq. (A.2) from Eq. (A.l) results in

f , az-g .-tj)i T~c',i d-Z'- (StA,-5s,-t) : 0 (A.4)

Now define the following quanties:

+I

I -i (1.16)
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(A. 6)

Substituting these definitions into Eqs. (A.3) and (A.4) respectively

results in

S- = o (A.7)

- S,= 0 (A.8)

Now define the following operators

G, +Lr-,A) a,(~ c i A)j-fs()#It V1.4

To use the above two equations the following must be proved

This can be done by using the previously presented definitions

a87 4/ , ceA OAt'-A ))(i(e.>', cj,,')d't' (A.I1)
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The term on the right hand side of Eq. (A.l1) can be expanded to give

+

+ ,, d' (A.12)

however, the following relationships are true

'r

Substituting the results of Eqs. (AM13) and (A.14) into Eq. (A.12) gives

Using Eqs. (1.16) and (A.15) gives

thus proving the equality in Eq. (A.1O). A similar proof can be con-

structed to show

L't-) IC F, t 4idC'z (A.16)

Using the results of Eqs. (A.1O) and (A.16) with the definitions of

Eqs. (1.14) and (A.9) in Eqs. (A.7) and (A.8) gives

Gj yp- 4 S3(A.17)

(A.18)j

Eqs. (A.17) and (A.18) represent a first order set of coupled integro-

differential equations. Now define two new operators such that
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(A. 19)

k G, -. (A .20)

Kg and Ku are the inverse operators of Gg and Gu respectively. The

derivation of these two operators is presented in Appendix B. Applying

these inverse operators to Eqs. (A.17) and (A.18) results in

(A.21)

YIc PA) K3 (S A -k Xct)

KX (SP"I -K,''c~~ (A.22)

Substituting Eqs. (A.21) and (A.22) into Eqs. (A.17) and (A.18) gives

,z~k, (A)G~tciSiC) (A.23)

/L K P V j vYm ) G Xti)- S (o =0 (A.24)

Eq. (A.23) is called the second order even-parity form of the Boltzmann

neutron transport equation. Eq. (A.24) is the odd-parity form of this

same equation. Rearranging Eq. (A.23) gives
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APPENDIX B

-DERIVATION OF THE Ku OPERATOR

The Ku operator as seen from Appendix A takes the inverse of the

Gu operator. The Gu operator is defined as
-~.c , = rf - (B.l)

(The " variable has been omitted, since it does not effect this deriva-

tion.) Let . be defined in terms of a Legendre polynomial

expansion

Cri P X't (B.2)

.to

From the addition theorem of Legendre polynomials the following can be

stated

21 1 . ( (B.3)

where Y. $I is a normalized spherical harmonic and YA'l is the complex

conjugate of Y tA.. Substituting Eq. (B.3) into Eq. (B.2) yields
00~ X U(& 

(B.4)
C" A'.4 =oZ2 A1"Y Y II

I'-o *

Now assume that -A) can be represented in a spherical harmonic expansion

Placing Eqs. (B.4) and (B.5) in Eq. (B.1) gives

cr-&Y T-,4, EI7 Z' +. Y.j, c11 (B.6)
In,~% Z A JU

Rearranging Eq. (B.6) leads to
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MY. - Z , ,j Jda (B.7)

The orthogonality properity of spherical harmonics states

Y 1t tAY dA (B.8)

where

'L.. 0. ;f k j
0 .

Using the orthogonality property in Eq. (B.7) results in

TAUOA.:.r &Y& ,~- (B.9)

Combining terms in Eq. (B.9) gives

1(A) 21'2 W (B.10)
lao AtL =Z ,( TCA YJI

Eq. (B.l0) illustrates that the Gu operator alters the spherical harmonic

coefficient by a factor of(o r- e =j" By definition an. inverse

operator to Gu must do the following

k4 G, tA) r F(A (8.11)

Therefore if Ku is defined as

'I (B.12)
1:o 2A.4(j A

then

i§~,~4?t, ff(cj2u~ (orraiMJ fY 0  (8.13)

thus satisfying Eq,, (B.11)
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Eq. (B.12) can be rearranged into the following form:

. I Io-/"(B.14)

r a,, -C-.

Rearranging Eq. (B.14) and again using the orthogonality property of

spherical harmonics, the following results:

J-,,,. ' .,, ..,. j,,K" I '.

Now make the following definition
R o p,'.v..j Y --O"T - /' I,,, (A , , j (B.16)

Using the addition theorem on Eq. (P.16) gives

0 '0 (,, 2"I (B.17)

( K C '.,* - or -  .P
.I~o

Using the results of Eq. (B.16) and previous definitions the following

can be stated:

K, (A = ( c, A I ,, (,'z 4a a (1.13)

Using a similar derivation the following form of Kg can be determined:

Kf -:3 ( I A) ;,, Z,) , ) (B.18)

92



APPENDIX C

DERIVATION OF THE WEAK FORM OF

SECOND ORDER EVEN-PARITY FLUENCE EQUATION

The classical technique for deriving the weak form of an equation

can be illustrated in the following general example. Let the equation

be represented by

L Vuc fcJ (C.l)

where L is an operator, 'Pt) is the dependent variable, 10f) is the

source term, and is a vector representing the independent variables.

If Eq. (C.l) is rearranged and multiplied through by a weight function,

Cl) , the following results:

L L't') - c 0t c A C (C.2)

Integrating Eq. (C.2) over its domain of definition gives

*L (L t - -Fcf ) vc = 0 (C.3)

Eq. (C.3) is the weak form of Eq. (C.l). This equation is "weak" in

that it holds in an integral sense rather than a point-wise sense as in

Eq. (C.1).

The derivation of the weak form of the even-parity equation follows

the above illustration. The even-parity equation is given by

where the operator for this equation is

L = -, v( xv G (C.5)
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and the source term is

Rearranging Eq. (C.4) and multiplying through by the weight function

results in

'0 /<, 0v c S p (C.7)

Now integrate over the phase space defined by i" and.LA

(c.8)
U Ad Ad

For simplification the following definition is presented

(C.9

Substituting Eq. (C.9) into Eq. (C.8) results in

F(C.10)

C >+ *.-V '~sL

Again for simplification let

and operate on each term in Eq. (C.lO) individually. Using Eq. (C.ll)

in the first term of Eq. (C.lO) results in

f A), f'cv,)>d (c.12)

Since A' and v have independent coordinate systems, Eq. (C.12) can be
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modified to

~ Ct( - (c.13)

Using the following vector identity (Ref. 36)

V. c (,ti = Cc>, v. (A ,) - C(Ac(cJi. VccF, J (C.14)

. (C .5

in Eq. (C.13) results in

(C.16)

Applying the divergence theorem to the first term on the right hand side

of Eq. (C.16)

(A.; 015CIA(C.17)

--where S represents the boundary of the spatial domain. Substituting

the definition of c~c ,Aj into Eq. (C.16) and using the results of the

divergence theorem modifies the first term of Eq. (C.lO) to

I> K A V PC -4) VciJd WAfc P,A*J AP , > d5- (C18

Operating on the fourth term in Eq. (C.lO) with both the vector identity

in Eq. (C.15) and the divergence theorem results in the following new

form

The weak form of Eq. (C.4) is now given by
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By the definition of the odd-parity fluence presented in Eq. (A.22),

the term in Eq. (C.20) representing and integration around the spatial

domain can be modified to

< ECKA,., X,A" - dl (C.21)

Assuming a vacuum boundary condition the following is true

m ,-) 0 , ,e.-S v  ,~ i '- O (C.22)

S /r4- X(, ) , Av , Z > 0 (C.23)

Eqs. (C.22) and (C.23) can be rewritten as

- v , (C.24)

" ,) = ) (re,) , FE SC , -Z O (C.25)

Using the results of Eqs. (C.24) and (C.25) the following modification

to Eq. (C.21) can be made:

I>

f( d(C.26)

Eq. (C.26) is equivalent to the following:

I- £LF%
' ) IkAjI Yrc '  L s  (C.27)
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Thus the weak form of the even-parity equation that naturally satisfies

the vacuum boundary c~ndition is

a A~ 1&, YLtC >5 ds 0
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APPENDIX D

-BILINEAR LAGRANGE POLYNOMIALS

A bilinear Lagrange polynomial can be-represented as

L cx.y z c, xy tax+ a, y (D.1)

If a rectangular element is defined as shown in Fig. 16, Eq. (D.1) can

be properly constrained to give the tent function used as a trial solu-

tion in Chapter II. Let Ll, L2, L3, L4 be the value of Eq. (D.1) at the

nodes defined in Fig. Then the following system of equation can be

written

(D.2)

L, Cx,,y, 1 0, xy, +%x, +a/, Q 4

Lz , ,= ,42 Y tC4X 2 + Q(J a,,

L Ck -~ a jy? 4 , +~x Q-t Y 1,

X 4, a ,, + a Xy j + G2,i

Now define the matrix H such the

(D.3)

xay, I_- 3 Y.3 Xj \/3

and the vector A and L where
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(X 4 ' Y4) (x 39 y3)

(XI , () ( 2, y 2)
.1 2

x

Fig 16. Rectangular Elemeyit
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A" r a, a,, c,,a.] (D.4)

L L, L.L , L4 .

The system of equations represented in Eq. (D.1) can now be represented

as

[H]A - (D.5)

Multiplying the inverse of the H matrix on both sides of Eq. (D.5) yields

A= H L (D.6)

Eq. (D.1) can be expressed as a product of a row vector P and the column

vector a, ifi T [ ¥ , ,P (D.7)

then

L~x~y P 7 A(D.8)

Substituting the values of A from Eq. (D.6) into Eq. (D.8) gives

L IY) z P IH]'L (D.9)

By letting the L assume the following values the tent function of nodes

1, 2, 3, 4 can be found respectively:

(1.0.0.0)

(0 ,0,0)

(0. 0 )

(0~.00 1
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APPENDIX E

CANONICAL TECHNIQUES

CANONICAL ELEMENTS/INTEGRATION

The concept of a canonical element is used in the finite element

method to simplify the integral evaluations associated with the chosen

numerical technique. In Fig. 17 a standard rectangular element with

sides parallel to the coordinate axis (x,y) is presented.

*0

y

(xl, Y2 ) (x2 Y2 )

b

+a

(xl, Yl) (x2 , Yl)

x

Fig. 17. Standard Rectangular Element

Inscribed in this element is a natural coordinate system defined by (n,).

The relationship between the natural coordinates and axis coordinates

is given by

= I (E.1)

y-YC (E.2)

This coordinate transformation defines a canonical element that repre-

sents the rectangular element in Fig. 18.
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I'L

.(-1, -1) (1, -)

Fig. 18. Canonical Element

From Eqs. (E.1) and (E.2) the following can be generated

= -_ Cou (E.3)
d.. x o0 ,,

->m IL~d (E.4)

Let f(x,y) be a function that is identically defined over all finite

elements in the (x,y) coordinate system shown in Fig. 17. Using the

4" coordinate transformation' equations this function can be redefined in

the natural coordinate system as -F(OI*3c. ,. Since this func-

tion is identically defined in all elements the transformation equations

will generate exactly the same functional representation in the canonical

element for all the elements in the (x,y) coordinate system. The only

difference is the scaling factors a and b that are related to the dimen-

sion of the element. Thus the following equality holds
I I

ff4 xY) ~ =abf f ,L ,) d/c/ d,,, (E.5)

This relationship allows the integral evaluation of f(x,y) over a finite

element to be done once over the canonical element. If a finer discreti-

zation is necessary the canonical evaluation need be changed only by the

new dimension parameters a, b caused by this mesh refinement.
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GALERKIN WEAK FORM EQUATION/ISOTROPIC SCATTER

The global integrals in the Galerkin weak form equation resulting

from the G operator and using isotropic scatter is

g

If (A ' is represented by the 
trial solution of Eq. (2.20), Eq. (E.6)

n

gives

cf¢( JL (A, k dxdM. * (E.7)

The bilinear Lagrange polynomials meet the requirement of being identi-

cally defined over all elements, thus the integral in Eq. (E.7) can be

evaluated over a canonical element as

... b f- L'cL, / Cti (E.8)

The evaluation of Eq. (E.8) can be done once and the result used for all

other angular elements.

GALERKIN WEAK FORM EQUATION/ANISOTROPIC SCATTERING

The global integral resulting from the Ku operator using a P1 aniso-

tropic scattering representation is

If the even-parity fluence is again represented as a tensor product of

bilinear Lagrange polynomials, then the derivatives that result from

the gradient operator are identical over each angular element. The

integrand of Eq. (E.9) contains other functions besides these derivatives.

These functions vary differently over each angular element, thus elimin-

ating a single canonical evaluation that would represent all these
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elements. Eq. (E.9) can be evaluated over the canonical element; how-

ever, it must be separately evaluated for each element defined in the

angular domain since the location of the element now affects the value

of this term.

10
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APPENDIX F

TOTAL TERMS IN KJAA.

The MACSYMA program did not have.enough available core to expand

the first term in the Galerkin weak form equation into all its distinct

terms. The reason this core limit was reached can be seen from the

following evaluation. The first term of the Galerkin weak form equation

can be expressed as

Using the definition of the Ku operator expands the integrand in Eq. (F.1)

to give

V CP,4)4- (;,A'IA.Jv'( AJt] (F.2)
"II

For this evaluation only the following is used

V 'E.C,/t) (ic, C A'/~L '.Y(,' v (F.3)

Applying the definition of the -v operator in cylindrical geometry

expands the integrand to

,; - ( ac p (,:) (F.4)

If 1Ko.vt is represented by linear Lagrange interpolating functions in

a four-dimensional phase space(e.A( k) the following general expression

can be written
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Substituting Eq. (E.5) into the first term in brackets in Eq. (E.4) gives

%Fi- 7 .a'oC .) (c.i-dzi L[e*A.) ) (C.*2be) (F.6)
e

Eq. (F.6) contains sixteen distinct terms. Proceeding in the same man-

ner with the other two terms in the brackets results in

. C a6 di)J(e ) cscxJ# A (r).A SrL(x ) (F,7)

$ 6 e ) ( 7F ( 5 d d(F .8 )

Eq. (F.7) contains twenty-four distinct terms and Eq. (F.8) contains

eight. The total number of distinct, terms resulting from the bracketed

terms in the integrand of Eq. (F.4) is forty-eight.

The odd-parity differential scattering cross section can be repre-

sented for a P3 legendre expansion as

. (F.9)

where

OSCX COJIC' 4 J11U) SI W)(F.10)

Eq. (F.10) represents three distinct terms and cubing this equation

results in ten for a total of thirteen distinct terms. Therefore, the

integrand in Eq. (F.4) contains 624 distinct terms.

For now ignore the integration over, 'and define the weight function

as

+L~L (o.' ,ko dcc ~dZ) (ee*fc . £~ ~ (F.11)
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The coefficients are different than those in Eq. (F.5), because in the

Galerkin method different combinations of Lagrange polynomials all

defined over the same finite element are multiplied together (see Eq.

(2.18)). The A-cc(eAj has forty-eight distinct terms just as A.v W(PA I.

Multiplying the forty-eight distinct terms of Eq. (F.l) by the 624

terms resulting from the previous work generates a total of 29,952

distinct terms. This number is an absolute minimum since the integra-

tion operation was not included. The integral evaluation over a rectan-

gular element of arbitrary dimension would generate at least four more

terms for each term evaluated. If the integral was complex, then more

than four terms could tesult.

Obviously many of the terms are similar and could be combined to

reduce the total. MACSYMA can only begin this simplification after all

the distinct terms are generated. Several approaches were attempted to

alleviate this shortcoming in MACSYMA, but all proved unsuccessful. The

main problem was the limited core capacity of the DEC 10 on which this

program resided.
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APPENDIX G

DERIVATION OF ANGULAR SYNTHESIS FUNCTION

In Chapter III an angular synthesis function was derived for use

with the collocation method. The selection of this function was guided

by two basic criteria. The first criterion dictated that the form of

an angular synthesis function must be simple to avoid the problems

encountered in Chapter II. The second criterion is the basic tenet of

using a synthesis function that accurately approximates the angular

variation of the neutron fluence. As mentioned in Chapter II, the

choice of an appropriate synthesis function is ma' e from experience,

previous calculations, or intuition.

The collocation angular synthesis function was selected from the

definition of the even-parity fluence. This fluence can be represented

as

4 (G.1)

The work accomplished by Roberds and Bridgman (Ref. 23) demonstrated

that a spheroid can be used as an angular synthesis function for the

regular Boltzmann fluence. Fig. 19a illustrates a spheroid that could

be used to represent Ic#.Aj for some anisotropic angular distribution.

Fig. 19b is a polar plot of Ijo-.41 using the same spheroid synthesis

function. If the two spheroids in Figs. 19a and 19b are added together

the result is the even-parity fluence and the polar plot of this addition

is presented in Fig. 19c.

The selected synthesis function must have the general form repre-

sented by Fig. 19c. In Chapter II a centered ellipsoid was proposed

as an angular synthesis function. Though this function would adequately
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19 C.

19 .

Fig. 19. Derivation of Collocation Angular Synthesis Function
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approximate the angular distribution of Fig. 19c, it does not meet the

first criterion as already demonstrated. A function that would accurately

approximate Fig. 19c is

AI +A. (G.2)

A polar plot of this function appears in Fig. 19d. A comparison of Fig.

19c and Fig. 19d demonstrates the adequacy of Eq. (G.2) to approximate

the angular distribution of the even-parity fluence in an air-over-

ground problem.

The largest component of the Boltzmann fluence in an air-over-ground

problem is aligned parallel with a ray drawn from the spatial location

of the point source to the spatial location of interest. The angular

coordinates of this streaming direction in the local coordinate system

changes from one spatial location to another. Let the streaming direction

for a spatial location be represented byl.4 and X. in the local coordin-

ate system. If the/4 variable in Eq. (G.2) is defined in terms of the

law of cosines, the following results

ApI + u, * u ia ;-41cos 6 -X o) (G.3)

Eq. (G.3) represents the angular shape presented in Fig. 19d and

has the capability of being aligned in the streaming direction at any

spatial location. Fig. 20 is a polar plot of Eq. (G.3).

The synthesis function represented in Eq. (G.3) satisfied the two

criteria previously presented. In the collocation method Eq. (G.3) is

used in the following form

M J 21 6j~i@.CJ (a. ~ C 4 .(puJI-LJ,,..scoa-co)~)(G.4)
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-BURST POINT
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Fig. 20. Definition of Collocation Angular Synthesis Function



The coefficients and u are determined from solving the global

matrix formed from applying the collocation method to the EPFBE. .These

two coefficients can be adjusted to represent even-parity angular flu-

ence shapes varying from highly anisotropic to isotropic. The form of

Eq. (G.4) is simple and was analytically integrable when placed in the

EPFBE used in the collocation method.

i
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APPENDIX H

FLOW CHARTS

This appendix contains the flow diagrams for both the Galerkin and

collocation program presented in Cahpters II and III respectively for

generating a matrix representation of the EPFBE. An explanation of the

numbers in the diagrams is presented below.

Galerkin Program (Fig. 21)

1. The following parameters are inputed.

a. Maximum number of mesh lines ine, Z,A{,X directions.

b. Number of spatial and angular test functions per finite element.

c. Global spatial node and angular node matrix that relates nodes

to elements.

d. Mesh node values for o, z,K, and Y coordinates.

e. Order of differential scattering cross section.

f. Cross sections.

2. Quadrature sets for use with spatial and angular numerical integration

are selected and inputed.
-0

3. Print out all input data as a check.

4. Zero all elements in the global matrix and load vector.

5. Determine coordinates for defining all angular finite elements.

--- Start loop over spatial finite elements.

6. Select a spatial finite element and define its location in the

spatial mesh.

--- Start loop over angular finite elements.

7. Select an angular finite element and from step 5 identify its loca-

tion in the angular mesh.
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8. From the coordinates of these selected elements calculate the para-

meters needed to transform each into a canonical element representation.

9. Select a quadrature point for thee , ;EA ,j ,and 19 variables and an

accompanying weight function.

'1 10. Select a combination of bilinear Lagrange polynomials representing

the spatial and angular test functions.

11. The numerical evaluation of the integrals involved with the source

term of the Galerkin weak form equation is performed. The integrands of

these integrals are expressed in terms of the test function and their

derivatives selected in step 10 and are evaluated at the quadrature

points defined in step 9. These evaluated terms are multiplied by the

corresponding weight function associated with these quadrature points and

the product is stored in an element of the load vector. The location of

this element in the load vector is determined by the test function com-

bination. This element represents the evaluated integrals in the source

term when all quadrature points and weights have been used and their

resultant products summed. The value of the test functions and their

derivatives that appear in the source term integrands are determined by

a series of function routines and subroutine programs. These subprograms

define the test functions in a canonical element, evaluate these func-

tions for the selected quadrature points, and asssemble these evaluated

functions into a representation of the source term integrands.

12. Select a combination of bilinear Lagrange polynomials representing

the spatial and angular trial functions.

13. The numerical evaluation of the local integrals containing the

even-parity fluence in the Galerkin weak form equation is performed.

The integrands of these integrals are expressed in terms of the trial
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functions and test functions selected in steps 12 and 10 respectively.

These integrands are evaluated at the quadrature points defined in step

9 and the result of this evaluation is multiplied by the weight functions

associated with the quadrature points. This product which represents a

partial evaluation of the weak form integrals is stored in one element

of the global stiffness matrix. The position of this element is deter-

mined by the test and trial function combinations. This element repre-

sents the full evaluation of the Galerkin weak form local integrals for
-e

the selected test and trial function combination after the contribution

of all quadrature point evaluations have been summed. As mentioned in

step 11 several subprograms contribute to this evaluation.

14. Has a different spatial trial function been selected in step 12

since the last iteration?

15. Select an angular finite element for global evaluation of the global

integrals in Galerkin weak form equation.

16. Calculate the parameters needed to transform the angular element

selected in step 15 into a canonical element representation.

17. Select quadrature points for the u' and x' variables and the accom-

panying weight functions.

18. Select a bilinear Lagrange polynomial trial function defined in the

angular element selected in step 15. The test functions and spatial

trial functions are the same as previously chosen.

19. The numerical evaluation of the global integrals (integrals defined

over the entire angular domain) resulting from the Ku and Gg operators

is performed. The integrands of these integrals are expressed in terms

of the test function selected in step 10, spatial trial function selected

in step 12, and angular trial function in step 18. The result of this
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Fig. 21. Galerkin Program Flow Chart
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evaluation is stored or added to existing values in the global stiffness

matrix in a position determined by the test and trial function combina-

tion. The subprograms mentioned in step 11 and 13 perform the evaluations.

20. Have all angular trial functions for the global integral evaluation

been used?

21. Have all quadrature points for the u' and x' variables been used

to evaluate the global integrals?

22. Have all angular elements been used for the global integral evalua-

tions?

23. Have all spatial and angular trial function combinations in step

12 been used?

24. Have all spatial and angular test functions combinations in step

10 been used?

25. Have all quadrature points for the ,' ' and -X variables been

used?

26. Have all angular elements from step 7 been used?

27. Have all spatial elements from step 6 been used?

Collocation Program (Fig. 22)

1. The following parameters are inputed.

a. Number of collocation points in e direction.

b. Number of collocation points in Z direction.

c. Number of mesh points in p direction.

d. Number of mesh points in Z direction.

e. r coordinate collocation points.

f. Z coordinate collocation points.

g. Mesh coordinates in e direction.
h. Mesh coordinates in Z direction.
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i. Total macroscopic cross section and P3 cross sections.

j. Height of burst.

2. All global matrix elements zeroed.-

3. Start of(o coordinate collocation loop. A tocoordinate collocation

point is selected and used for evaluation.

4. Splines in e coordinate that have a value at selected e coordinate
mesh point are identified.

5. Start of 2 coordinate collocation loop. A 2 coordinate collocation

point is selected and used for evaluation.

6. The streaming direction and 90 degrees off the streaming direction

in the x=O plane at the selected spatial collocation points are deter-

mined.

7. Ellipsoidal synthesis function pitch is set based on the streaming

direction. Spatial derivatives of the pitch function (cos,ors1.)

are determined for the selected spatial collocation points.

8. Splines in 2 coordinate that have a value at selected Z coordinate

are identified.

9. Start loop over all splines in e coordinate that were previously

identified in 4.

10. Start loop over all splines in Z coordinate that were previously

defined in 8.

11. Evaluate all terms in EPFBE that have spatial dependence. This

encompasses an evaluation of the 1t6(Z) terms in Eq. (3.11) and

their derivatives.

12. Decision block to determine if all splines in Z coordinate identified

in 8 have been evaluated (Y=Yes, N=No).
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13. Decision block to determine if all splines in e coordinate identi-
fied in 4 have been evaluated.

14. Evaluate all terms in EPFBE that have angular dependence. This

encompasses an evaluation of the c., + cl (A 4 7I-' C(-XX)) 2

term in Eq. (3.11) and its derivative with respect to the u and x vari-

ables. (Primed and unprimed.)

15. The spatial and angular contributions of the EPFBE found from 11

and 14 respectively are combined to calculate the value of all terms in

the EPFBE. -

16. Value of EPFBE calculated in 15 is stored in appropriate global

matrix element. The value of the source terms is stored in the load

vector. The position of these elements in the global matrix and load

vector is determined by the spatial spline combination and angular col-

location points.

17. Decision block to determine if both angular collocation points have

been evaluated.

18. Decision block to determine if all Z coordinate collocation points

have been evaluated.

19. Decision block to determine if all coordinate collocation points

have been evaluated.

Global matrix formed.
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Fig. 22. Collocation Program Flow Diagram
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APPENDIX I

DERIVATION OF NORMALIZED B. SPLINES OF ORDER 4

In Chapter III the spatial variation of neutral particle fluence

was approximate by cubic spline functions defined in the and Z variables.

The value of these functions for various spatial locations was calculated

in the collocation program by a subroutine called BS. The following

derivation generates the equations used in this routine for defining

and evaluating these splines.

Assume the node sequence tl , t2, t3, t4, t5 illustrated in Fig. 23.

t2  t3  t4  t5

Fig. 23. B Spline Node Sequence

Define the expression (.-C-t) such that

k = order of the spline

(-i = degree of the spline

K 1 y -1 (S--t) , fs~
(st)+" (s "

0 if s, t

Using the above definitions define a new variable N,K(t) as

Ni,K( ..t .... .If ., -~- +Il

where

- number of the first node

t,....,,= divided difference operator operating on the S variable and

defined in the following manner.

[S X, -r,] , 
(( X:, X .)-; (

, XX-SS),
C,~~~~~~~~~.. . . . . . .. ,...... YhJ::..... , c........ ,,~,j) (_,
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Using Eq. (I.1) and setting K=4 the following representation of the B

splines can be written for the node sequence in Fig. 23

N 3 (t-t Lt,t, tzj tj,t-2, 5l] (5_1)3i (1.2)

Now apply the definition of the divided difference operator

Lt. , ..t.(3 . ,= L,.t.t,3 - - tt.t,.. s¢- , (1.3)
* .ts.- t ,

The following series of equations represent a repeated application of

the divided difference operator to the two terms on the right hand side

of equation 1.3

A = t,t 4 ,t tt J -tr 3 s  -ta t js41C (1.4)
ts- t

B [ , t t. . ] (S-~J C) ,t' t ],) (st) - ,t ' ,f ]4 ( -  (1.5)

To A and B the following reductions can be made

-t,. t0, (s-tfl + Etv,,ta ](s-tL+ (1.6)C t,3,,,,, -;
I. .ts- .t

E t=,t" ]s st- t t -s- ( )

F L t,, tt (s-.;j1 [.. (1.8)

Applying the defintion of the divided difference operator to C, D, E,

and F results ino = [ t t.J 5 s-{J : ( t,.)'-)' ( ' )t (1.9)
t0 t"- 4

j-~( t+ .t,-ti+ (1.10)
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tj- tj (0.11)

._t , ((1.12)

By back substituting the following relationships are formed.

H (1.13)ts- t.

D H- X (1.14)

F T(1.15)
t3- t

Further back substituting results in

c-E (1.16)
ts-

-F (1.17)
t4-ti

Finally the form of the B spline used in the collocation program is

defined as

( -t,) A- 8 A-8 (1.18)

(t5- t.

The spline in Eq. (1.18) is normalized such that
c, t (1.19)
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